Skip to main content

A New Combination Method for Fuzzy Optimal Control

  • Conference paper
  • First Online:
Progress in Intelligent Decision Science (IDS 2020)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1301))

Included in the following conference series:

  • 560 Accesses

Abstract

In this paper, we present a new hybrid method for solving fuzzy optimal control problems (FOCP). This hybrid method consists of a polynomial and an improved multi-layer perceptron (IMLP) network neural network. An improved neural network is a two-layer neural network. The first layer consists of inputs, weights, and six non-linear sigmoid transfer functions per α-cut and every training point. The second layer, which is the same output layer, includes the weights of the output layer and the neural network outputs, and six linear transfer functions per α-cut and each educational point. Artificial Neural Network training is based on the optimization technique on the target function. This objective function is the error function, and is equal to the sum of the squared errors that are based on the Pontryagin minimization principle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Berkani, S., Manseur, F., Maidi, A.: Optimal control based on the variational iteration method. Comput. Math. Appl. 64, 604–610 (2012)

    Article  MathSciNet  Google Scholar 

  2. Bede, B., Gal, S.G.: Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations. Fuzzy Sets Syst. 151, 581–599 (2005)

    Article  MathSciNet  Google Scholar 

  3. Clever, D., Lang, J., Ulbrich, S., Ziems, J.C.: Combination of an adaptive multilevel SQP method and a space-time adaptive PDAE solver for optimal control problems. Procedia Comput. Sci. 1, 1435–1443 (2010)

    Article  Google Scholar 

  4. Cheng, T., Sun, H., Qu, Z., Lewis, F.L.: Neural network solution for suboptimal control of non-holonomic chained form system. Trans. Inst. Measurement Control 31(6), 475–494 (2009)

    Article  Google Scholar 

  5. Cheng, T., Lewis, F.L.: Neural network solution for finite horizon H-infinity constrained optimal control of nonlinear systems. J. Control Theory Appl. 5(1), 1–11 (2007)

    Article  MathSciNet  Google Scholar 

  6. Effati, S., Pakdaman, M.: Optimal control problem via neural networks. Neural Comput. Appl. 23, 2093–2100 (2012)

    Article  Google Scholar 

  7. Ezadi, S., Parandin, N., Homashi, A.G.: Numerical solution of fuzzy differential equations based on semi-taylor by using neural network. J. Basic Appl. Sci. Res. 3(1s), 477–482 (2013)

    Google Scholar 

  8. Farhadinia, B.: Pontryagin’s minimum principle for fuzzy optimal control problems. Iran. J. Fuzzy Syst. 11, 27–43 (2014)

    MathSciNet  MATH  Google Scholar 

  9. Farahi, M.H., Keshtegar, M., Najariyan, M.: Fuzzy optimal control of a poisoning-pest model by using -cuts. J. Eng. Res. Technol. 1(3), 79–82 (2014)

    Google Scholar 

  10. Garg, D., Patterson, M., Hagera, W.W., Raoa, A.V., Bensonb, D.A., Huntington, G.T.: A unified framework for the numerical solution of optimal control problems using pseudo-spectral methods. Automatica 46, 1843–1851 (2010)

    Article  MathSciNet  Google Scholar 

  11. Gerdts, M.: A non-smooth Newton’s method for control-state constrained optimal control problems. Math. Comput. Simul. 79, 925–936 (2008)

    Article  MathSciNet  Google Scholar 

  12. Hornick, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Netw. 2, 359–366 (1989)

    Article  Google Scholar 

  13. Hilscher, R.S., Zeidan, V.: Hamilton-Jacobi theory over time scales and applications to linear-quadratic problems. Nonlinear Anal. 75, 932–950 (2012)

    Article  MathSciNet  Google Scholar 

  14. Wu, H.-C.: Duality theory in fuzzy optimization problems. Fuzzy Optim. Decis. Making 3, 345–365 (2004)

    Article  MathSciNet  Google Scholar 

  15. Krabs, W., Pickl, S.: An optimal control problem in cancer chemotherapy. Appl. Math. Comput. 217, 1117–1124 (2010)

    MathSciNet  MATH  Google Scholar 

  16. Kirk, D.E.: Optimal Control Theory—An Introduction. Dover Publications, Mineola (2004)

    Google Scholar 

  17. Ku, C.C., Huang, P.H., Chang, W.J.: Passive fuzzy controller design for nonlinear systems with multiplicative noises. J. Franklin Institute 347, 732–750 (2010)

    Article  MathSciNet  Google Scholar 

  18. Kwun, Y.C., Kim, J.S., Park, M.J., Park, J.H.: Nonlocal controllability for the semi linear fuzzy integro differential equations in n-dimensional fuzzy vector space. Advances in Difference Equations (2009)

    Google Scholar 

  19. Liu, C., Nocedal, J.: On the limited memory BFGS method for large scale optimization. Math. Program. 45(3), 503–528 (1989)

    Article  MathSciNet  Google Scholar 

  20. Lewis, F., Syrmos, V.L. (eds.): Optimal Control. Springer, Cham (2016)

    Google Scholar 

  21. Luenberger, D.G. (ed.): Linear and Nonlinear Programming, 2nd edn. Addison Wesley, Boston (2008)

    MATH  Google Scholar 

  22. Modares, H., Naghibi Sistani, M.B.: Solving nonlinear optimal control problems using a hybrid IPSOSQP algorithm. Eng. Appl. Artif. Intell. 24, 476–484 (2011)

    Google Scholar 

  23. Najariyan, M., Farahi, M.H.: Optimal control of fuzzy linear controlled system with fuzzy initial conditions. Iran. J. Fuzzy Syst. 10(3), 21–35 (2013)

    MathSciNet  MATH  Google Scholar 

  24. Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., Mishchenko, E.F.: The mathematical theory of optimal processes, translated from the Russian by K. N. Trirogoff; edited by L. W. Neustadt. Interscience Publishers John Wiley & Sons, Inc., New York (1962)

    Google Scholar 

  25. Pinch, R.: Optimal Control and the Calculus of Variations. Oxford Science Publications, Oxford University Press, New York (1993)

    Google Scholar 

  26. Phu, N.D., Tung, T.T.: Existence of solutions of fuzzy control differential equations. J. Sci. Technol. Dev. 10, 5–12 (2007)

    Google Scholar 

  27. Roman, F., Barros, L., Bassanezi, R.: A note on the Zadeh’s extensions, Fuzzy sets on Banach spaces. Inform. Sci. 144, 227–247 (2002)

    Google Scholar 

  28. Ross, I.M.: A Primer on Pontryagin’s Principle in Optimal Control. Collegiate Publishers (2009). ISBN 978-0-9843571-0-9

    Google Scholar 

  29. Nik, H.S., Effati, S., Shirazian, M.: An approximate-analytical solution for the Hamilton–Jacobi–Bellman equation via homotopy perturbation method. Appl. Math. Model. 36(11), 5614–5623 (2012)

    Article  MathSciNet  Google Scholar 

  30. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. SMC 15, 116–132 (1985)

    MATH  Google Scholar 

  31. Yang, D., Cai, K.Y.: Finite-time quantized guaranteed cost fuzzy control for continuous- time nonlinear systems. Expert Syst. Appl. (2010). https://doi.org/10.1016/j.eswa.03.024

    Article  Google Scholar 

  32. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)

    Article  Google Scholar 

  33. Zimmermann, H.J.: Fuzzy Set Theory and Its Applications. Kluwer Academic, Boston (1991)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeid Abbasbandy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Askari, S., Abbasbandy, S. (2021). A New Combination Method for Fuzzy Optimal Control. In: Allahviranloo, T., Salahshour, S., Arica, N. (eds) Progress in Intelligent Decision Science. IDS 2020. Advances in Intelligent Systems and Computing, vol 1301. Springer, Cham. https://doi.org/10.1007/978-3-030-66501-2_10

Download citation

Publish with us

Policies and ethics