Skip to main content

Distribution Patterns, Diversity Centers, and Priorities for Conservation of Aquatic Plants in Iran

  • Chapter
  • First Online:
Southern Iraq's Marshes

Part of the book series: Coastal Research Library ((COASTALRL,volume 36))

  • 502 Accesses

Abstract

A climatic heterogeneity and geomorphologic complexities that have been shaped during a sophisticated paleo-biogeographical history has led Iran to become a prominent zone of endemism, an endemic center of the Irano-Turanian region, and a global center of diversity for vascular plant taxa in the world. According to the present study, Iranian macrophyte flora includes 68 species of 35 genera of vascular plants belonging to 22 plant families. The Potamogetonaceae family, with 16 species, is the largest family of true aquatic plants in the country. The aquatic plants were distributed between −29 m (Wolffia arrhiza (L.) Horkel.) and 3200 m (Triglochin palustris L.). The greatest number of species (48 species) occurs at an altitude of 0–500 m. Hydrocharitaceae and Potamogetonaceae comprise the largest number of endangered and critically endangered species of Iranian aquatic plants. The main hotspot of species richness of true aquatic plants occurred in the Hyrcanian phytogeographical region, followed by an area in the Atropatanean region. The highest value of AZEs exists in Gilan Province. Despite the high importance of these habitats from a conservation perspective, numerous direct and indirect man-made threats such as pollution, invasive plants, and climate change have exposed these habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akasaka M, Takamura N, Mitsuhash H, Kadono Y (2010) Effects of land use on aquatic macrophyte diversity and water quality of ponds. Freshw Biol 55:909–922

    Article  Google Scholar 

  • Akhani H, Khoshravesh R, Eskandari M, Greuter W (2010) Ferns and fern allies in Iran. Rostaniha 10(suppl. 1):1–130

    Google Scholar 

  • Alahuhta J (2015) Geographic patterns of lake macrophyte communities and species richness at regional scale. J Veg Sci 26:564–575

    Article  Google Scholar 

  • Babaei H, Khodaparast SH (2009) The study of petroleum pollution and heavy metals in Anzali wetlands. The First National conference of Iran Wetlands. Khuzestan, Ahvaz

    Google Scholar 

  • Barthlott W, Lauer W, Placke A (1996) Global distribution of species diversity in vascular plants: towards a world map of phytodiversity. Erdkunde 50:317–328

    Article  Google Scholar 

  • Barthlott W, Biedinger N, Braun G, Feig F, Kier G, Mutke J (1999) Terminological and methodological aspects of the mapping and analysis of global biodiversity. Acta Bot Fenn 162(0):103–110

    Google Scholar 

  • Bayat R, Jafari S, Ghermez Cheshmeh B, Charkhabi AH (2016) Dust effects on vegetation: A case study on Shadegan Wetlands. Remote Sens GIS Nat Resour 7(2):17–32

    Google Scholar 

  • Bottrill MC, Joseph LN, Carwardine J, Bode M, Cook C, Game ET et al (2008) Is conservation triage just smart decision making? Trends Ecol Evol 23:649–654

    Article  Google Scholar 

  • Buryakovsky LA, Chilinger GV, Aminzadeh F (2001) Petroleum geology of the South Caspian Basin. Gulf Professional Publishing USA, p 442

    Google Scholar 

  • Caro T (2017) Conservation by proxy. Island Press

    Google Scholar 

  • Carpenter SR, Lodge DM (1986) Effects of submersed macrophytes on ecosystem processes. Aquat Bot 26:341–370

    Article  Google Scholar 

  • Casper SJ (1969) Lentibulariaceae. In: Rechinger KH (ed) Flora Iranica, Lfg. 58. –Akad. Druck- und Verlagsanstalt, Graz

    Google Scholar 

  • Dandy JE (1971a) Ruppiaceae. In: Rechinger KH (ed) Flora Iranica, Lfg. 84. – Akad. Druckund Verlagsanstalt, Graz

    Google Scholar 

  • Dandy JE (1971b) Alismataceae. In: Rechinger KH (ed) Flora Iranica, Lfg. 78. – Akad. Druckund Verlagsanstalt, Graz

    Google Scholar 

  • Dandy JE (1971c) Butomaceae. In: Rechinger KH (ed) Flora Iranica, Lfg. 79. – Akad. Druckund Verlagsanstalt, Graz

    Google Scholar 

  • Dandy JE (1971d) Hydrocharitaceae. In: Rechinger KH (ed) Flora Iranica, Lfg. 80. –Akad. Druck- und Verlagsanstalt, Graz

    Google Scholar 

  • Dandy JE (1971e) Juncaginaceae. In: Rechinger KH (ed) Flora Iranica, Lfg. 82. – Akad. Druckund Verlagsanstalt, Graz

    Google Scholar 

  • Dandy JE (1971f) Najadaceae. In: Rechinger KH (ed) Flora Iranica, Lfg. 86. – Akad. Druckund Verlagsanstalt, Graz

    Google Scholar 

  • Dandy JE (1971g) Potamogetonaceae. In: Rechinger KH (ed) Flora Iranica, Lfg. 83. –Akad. Druck- und Verlagsanstalt, Graz

    Google Scholar 

  • Dandy JE (1971h) Zannichelliaceae. In: Rechinger KH (ed) Flora Iranica, Lfg. 85. –Akad. Druck- und Verlagsanstalt, Graz

    Google Scholar 

  • Davis SD, Heywood VH, Hamilton AC (1994) Centres of plant diversity. Nat Hist 111(1):01–01

    Google Scholar 

  • Den Hartog C (1975) Aquatic botany—aims and scope of a new journal. Aquat Bot 1:1–2

    Article  Google Scholar 

  • Dinarwand M (2017) Flora of aquatic plants of Iran. In: Assadi et al (eds) Flora of Iran. Research Institute of Forests and Rangelands

    Google Scholar 

  • Djamali M, Akhani H, Khoshravesh R, Andrieu-Ponel V, Ponel P, Brewer S (2011) Application of the global bioclimatic classification to Iran: implications for understanding the modern vegetation and biogeography. Ecologia mediterranea 37(1):91–114

    Article  Google Scholar 

  • Dolatkhahi M, Yosefi M (2010) The study of aquatic and semi-aquatic plants of International Wetlands of Parishan. Fars 1(1):91–104

    Google Scholar 

  • Ejankowski W, Lenard T (2015) Climate driven changes in the submerged macrophyte and phytoplankton community in a hard water lake. Limnologica - Ecol Manage Inland Waters 52:59–66

    Article  Google Scholar 

  • Engelhardt KAM, Ritchie ME (2001) Effects of macrophyte species richness on wetland ecosystem functioning and services. Nature 411:687–689

    Article  Google Scholar 

  • ESRI (2000) ArcView GIS Ver. 3.2a. California: Environmental Systems Research Institute Inc.

    Google Scholar 

  • Fernández-Aláez C, Fernández-Aláez M, García-Criado F, García Girón J (2017) Environmental drivers of aquatic macrophyte assemblages in ponds along an altitudinal gradient. Hydrobiologia

    Google Scholar 

  • Ferreira T, O’Hare MT, Szoszkiewicz K, Hellsten S (Guest eds) (2014) Plants in hydrosystems: from functional ecology to weed research. Hydrobiologia 737:1–345

    Google Scholar 

  • Fisher WB (1968) Physical Geography. In: Fisher WB, editor. The Cambridge History of Iran, vol. 1. Cambridge University Press. pp. 3e110

    Google Scholar 

  • Franks PJ, Adams MA, Amthor JS, Barbour MM, Berry JA, Ellsworth DS, Farquhar GD, Ghannoum O, Lloyd J, McDowell N et al (2013) Sensitivity of plants to changing atmospheric CO2 concentration: from the geological past to the next century. New Phytol 197:1077–1094

    Article  Google Scholar 

  • Frey W, Probst W (1986) A synopsis of the vegetation of Iran. In: Kürschner H (ed) Contributions to the vegetation of Southwest Asia. TAVO, Naturwissenshaften, Beih, pp 61–73

    Google Scholar 

  • Garrett EC, Hellquist CB (2006) Aquatic and wetland plants of Northeastern North America, vol 2. The University of Wisconsin Press, 537pp

    Google Scholar 

  • Ghazban F, Khosheghbal M (2011) The origin of heavy metals in Anzali wetland sediments. J Ecol 57:45–56. (In Persian)

    Google Scholar 

  • Ghorbani M (2013) The economic geology of Iran. Springer, p 581

    Google Scholar 

  • Grutters MC, Haury J, Van Valkenburg JLCH, Brundu G, Newman J, Clayton JS, Anderson LWJ, Hofstra D (2017) Management and control methods of invasive alien freshwater aquatic plants: a review. Aquat Bot 136:112–137

    Article  Google Scholar 

  • Hatami M, Mirzayi M, Bandegani M, Sadeghi M, Nazsabet F (2013) Determination of mercury, lead, arsenic, cadmium and chromium in salt and water of Maharloo Lake, Iran, in different seasons. J Univ Med Sci Mazandaran 23(108):91–98

    Google Scholar 

  • Havel JE, Kovalenko KE, Thomaz SM, Amalfitano S, Kats LB (2015) Aquatic invasive species: challenges for the future. Hydrobiologia 750:147–170

    Article  Google Scholar 

  • Hodkinson DJ, Thompson K (1997) Plant dispersal: the role of man. J Appl Ecol 34:1484–1496

    Article  Google Scholar 

  • Homke S, Verges J, Emami H, Garces M, Karpuz R (2004) Magnetostratigraphy of Miocene Pliocene Zagros foreland deposits in the front of the push–e Kush arc (Lurestan Province Iran). Earth Planet Sci Lett 225(3–4):397–410

    Article  Google Scholar 

  • Hossain K, Yadav S, Quaik S, Pant G, Maruthi AY, Ismail N (2016) Vulnerabilities of macrophytes distribution due to climate change. Theor Appl Climatol 129:1123–1132

    Article  Google Scholar 

  • Hosseini M, Nabavi MN, Rajabzadeh A, Omidvar V (2010) The alternation comparison of conservative valuations of Shadegan Wetlands during 1980–2000. Wetland (Shahid Chamran-Ahvaz) 1(4):21–37. (In Persian)

    Google Scholar 

  • Hughes L (2000) Biological consequences of global warming: is the signal already apparent? Trends Ecol Evol 15:56–61

    Article  Google Scholar 

  • Iran Meteorological organization (2014) Annual report, Tehran

    Google Scholar 

  • Kalff J (2002) Limnology. Printice Hall, New Jersey, 592 p

    Google Scholar 

  • Kamrani A, Naqinezhad A, Attar F, Jalili A, Charlet D (2011) Wetland flora and diversity of the Western Alborz Mountains, North Iran. Phytologia Balcanica 17(1):53–66

    Google Scholar 

  • Karami M, Kasmani ME, Almaseh AA (2001) Plants of Hashilan Wetland, Kermanshah, Iran. J Sci Iran 1(3):2–7

    Google Scholar 

  • Kelly AE, Goulden ML (2008) Rapid shifts in plant distribution with recent climate change. Proc Natl Acad Sci USA 105:11823–11826

    Article  Google Scholar 

  • Keruzore AA, Willby NJ, Gilvear DJ (2013) The role of lateral connectivity in the maintenance of macrophyte diversity and production in large rivers. Aquat Conserv Mar Freshwat Ecosyst 23:301–315

    Article  Google Scholar 

  • Khalili A, Rahimi J (2014) High-resolution spatiotemporal distribution of precipitation in Iran: a comparative study with three global precipitation data sets. Theor Appl Climatol 118(1–2):211–221

    Article  Google Scholar 

  • Kier G, Mutke J, Dinerstein E, Ricketts TH, Küper W, Kreft H, Barthlott W (2005) Global patterns of plant diversity and floristic knowledge. J Biogeogr 32(7):1107–1116

    Article  Google Scholar 

  • Knutti R, Sedlacek J (2013) Robustness and uncertainties in the new CMIP5 climate model projections. Nat Clim Chang 3(4):369–373

    Article  Google Scholar 

  • Lacoul P, Freedman B (2006) Environmental influences on aquatic plants in freshwater ecosystems. Environ Rev 14:89–136

    Article  Google Scholar 

  • Leonard J (1991–1992) Contribution a l’etude de la flora et de la vegetation des deserts d’Iran Fascicule 10 Etude des aires de distribution les phytochories les chorotypes Meise: Jardin botanique national de Belgique

    Google Scholar 

  • MacArthur RH (1972) Geographical ecology. Harper & Row, New York

    Google Scholar 

  • Martins SV, Milne J, Thomaz SM, McWaters S, Mormul RP, Kennedy M, Murphy K (2013) Human and natural drivers of changing macrophyte community dynamics over 12 years in a Neotropical riverine floodplain system. Aquat Conserv Mar Freshwat Ecosyst 23:678–697

    Google Scholar 

  • Mehrabian AR (2015) Distribution patterns and diversity of Onosma in Iran: with emphasis on endemism conservation and distribution pattern in SW Asia. Rostaniha 16(1):36–60. (in Persian)

    Google Scholar 

  • Mehrabian AR, Khajoei Nasab F, Fraser-Jenkins CR, Tajik F (2020a) Distribution patterns and priorities for conservation of Iranian pteridophytes. Fern gaz 21(4):141–160

    Google Scholar 

  • Mehrabian AR, Sayadi S, Majidi Kuhbenani M, Hashemi Yeganeh V, Abdoljabari M (2020b) Priorities for conservation of endemic trees and shrubs of Iran: important plant areas (IPAs) and Alliance for zero extinction (AZE) in SW Asia. Journal of Asia-Pacific Biodiversity 13(2):295–305

    Article  Google Scholar 

  • Morecroft MD, Keith SA (2009) Plant ecology as an indicator of climate and global change. In: Climate change: observed impacts on planet earth, 1st edn. Elsevier B.V, pp 297–305

    Google Scholar 

  • Naqinezhad AR, Attar F, Jalili A, Mehdigholi K (2010) Plant biodiversity of wetland habitats in dry steppes of Central Alborz Mountains, N. Iran. Aust J Basic Appl Sci 4:321–333

    Google Scholar 

  • O’Hare MT (2015) Aquatic vegetation—a primer for hydrodynamic specialists. J Hydraul Res 53:687–698

    Article  Google Scholar 

  • Olmstead RG (2013) Phylogeny and biogeography in Solanaceae, Verbenaceae and Bignoniaceae: a comparison of continental and intercontinental diversification patterns. Bot J Linn Soc 171:80–102

    Article  Google Scholar 

  • Ramachandra TV (2001) Restoration and management strategies of wetlands in developing countries. Indian Inst Sci Electron Green J 4(3):126–138

    Google Scholar 

  • Ramsar International Convention of Wetlands. Available from http://www.ramsar.org/. Accessed 10 May 2016

  • Rechinger KH (1966a) Ceratophyllaceae. In: Rechinger KH (ed) Flora Iranica, Lfg. 28. –Akad. Druck- und Verlagsanstalt, Graz

    Google Scholar 

  • Rechinger KH (1966b) Haloragaceae. In: Rechinger KH (ed) Flora Iranica, Lfg. 18. –Akad. Druck- und Verlagsanstalt, Graz

    Google Scholar 

  • Rechinger KH (1966c) Hippuridaceae. In: Rechinger KH (ed) Flora Iranica, Lfg. 31. – Akad. Druck- und Verlagsanstalt, Graz

    Google Scholar 

  • Rechinger KH (1966d) Nymphaeaceae. In: Rechinger KH (ed) Flora Iranica, Lfg. 33. –Akad. Druck- und Verlagsanstalt, Graz

    Google Scholar 

  • Rechinger KH (1978) Trapaceae. In: Rechinger KH (ed) Flora Iranica, Lfg. 127. –Akad. Druck- und Verlagsanstalt, Graz

    Google Scholar 

  • Rechinger KH (1990) Pontederiaceae. In: Rechinger KH (ed) Flora Iranica, Lfg. 167. –Akad. Druck- und Verlagsanstalt, Graz

    Google Scholar 

  • Rivas–Martínez S, Sanchez-Mata D, Costa M (1999) Boreal and western temperate forest vegetation (syntaxonomical synopsis of the potential natural plant communities of North America II). Itinera Geobotanica 12:3–311

    Google Scholar 

  • Saaa LL, Bozek M, Hauxwell J, Wagner K (2010) Response of aquatic macrophytes to human land use perturbations in the watersheds of Wisconsin lakes, USA. Aquat Bot 93(1):1–8

    Article  Google Scholar 

  • Shakur A, Roshan Gh, Najafe R et al (2010) Evaluating climatic potential for palm cultivation in Iran with emphasize on degree-day index. Afr. J. Agric. Res. 13:99e118

    Google Scholar 

  • Short FT, Kosten S, Morgan PA, Malone S, Moore GE (2016) Impacts of climate change on submerged and emergent wetland plants. Aquat Bot 135(3):17

    Google Scholar 

  • Stöklin J (1968) Structural history and tectonics of Iran: a review. AAPG Bull 52:1229–1258

    Google Scholar 

  • Stöklin J (1974) Northern Iran: Alborz Mountains. Geological Society, London, Special Publications, 4: 213–234

    Google Scholar 

  • Tavakoli S, Ejtehadi H, Amini T, Zarre H, Razavi S (2014) Pajooheshhaye Giahi 26(4):423–433

    Google Scholar 

  • Toivonen L, Triest P, Uotila, Willby N (Guest eds) (2010) Aquatic invasions and relation to environmental changes: proceedings of the 12th international symposium on aquatic weeds, European weed research society. Hydrobiologia 656:1–267

    Google Scholar 

  • Tokoro T, Hosokawa S, Miyoshi E, Tada K, Watanabe K, Montani S et al (2014) Net uptake of atmospheric CO2 by coastal submerged aquatic vegetation. Glob Change Biol 20:1873–1884

    Article  Google Scholar 

  • Toledo JA, Kaminski J, Santanna MA, Santos DR (2012) Tampão Santa Maria (TSM) como alternativa ao tampão SMP para medição da acidez potencial de solos ácidos. Braz Soil Sci Soc 36:427–435

    Google Scholar 

  • Vetaas OR, Ferrer-Castán D (2008) Patterns of woody plant species richness in the Iberian Peninsula: environmental range and spatial scale. J Biogeogr 35:1863–1878

    Article  Google Scholar 

  • Wagnetiz G (1986) Centaurea in Southwest Asia: patterns of distribution and diversity. Proc R Soc Edinburgh. Sect B Biol Sci 89B:11–21

    Article  Google Scholar 

  • Walter H, Breckle S-W (2002) Zonobiome of the evergreen tropical rain forest (Zonobiome of the equatorial humid diurnal climate). — In Walter’s vegetation of the earth: the ecological systems of the geo-biosphere, Springer, Berlin: 115–162

    Google Scholar 

  • Wetzel RG (2001) Limnology: lake and river ecosystems. Academic Press, San Diego, 998 p

    Google Scholar 

  • Williams PH, Gibbons D, Margules C, Rebelo A, Humphries C, Pressey R (1996) A comparison of richness hotspots rarity hotspots and complementary areas for conserving diversity of British birds. Conserv Biol 10(1):155–174

    Article  Google Scholar 

  • Wood KA, O’Hare MT, Daunt F, Stillman RA (2014) Can sacrificial feeding areas protect aquatic plants from herbivore grazing? Using behavioral ecology to inform wildlife management. PLoS One 9

    Google Scholar 

  • Wood KA, O’Hare MT, McDonald C, Searle KR, Daunt F, Stillman RA (2017) Herbivore regulation of plant abundance in aquatic ecosystems. Biol Rev

    Google Scholar 

  • Yosefi M, Kazemi R (2008) Aquatic and semi -aquatic plants of Choghakhor Wetlands. First National Conference on Iranian Wetlands, Ahvaz, pp 1–8

    Google Scholar 

  • Yosefi M, Toranj S (2015) A preliminary checklist of vascular aquatic plants of Iran. Res J Recent Sci 4(1):1–8

    Google Scholar 

  • Zohary M (1963) On the geobotanical structure of Iran. The Bulletin of the Research Council of Israel, Section D, Botany, Supplement 11D: 1–114

    Google Scholar 

  • Zohary M (1973a) On the geobotanical structure of Iran. Bull Res Council Israel 11D(supplementary):1–113

    Google Scholar 

  • Zohary M (1973b) Geobotanical foundations of the Middle East. vol. 1 and 2. Stuttgart, Gustav Fischer Verlag and Amsterdam, Swets and Zeitlinger

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmadreza Mehrabian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mehrabian, A., Nasab, F.K. (2021). Distribution Patterns, Diversity Centers, and Priorities for Conservation of Aquatic Plants in Iran. In: Jawad, L.A. (eds) Southern Iraq's Marshes. Coastal Research Library, vol 36. Springer, Cham. https://doi.org/10.1007/978-3-030-66238-7_13

Download citation

Publish with us

Policies and ethics