Skip to main content

Usage of Satellite Technology in Monitoring the Wetlands of Turkey, Tigris, and Euphrates Watershed

  • Chapter
  • First Online:
Southern Iraq's Marshes

Part of the book series: Coastal Research Library ((COASTALRL,volume 36))

  • 484 Accesses

Abstract

With the increase of anthropogenic activities, the importance of the essence of life, water, proportionally continues to rise. The effective use of water is vital as an important role in socio economic development of nations. Thus, frequent water bodies monitoring is a crucial part of their sustainable management. As remote sensing data is useful in monitoring water and wetland areas, in this chapter we investigate the usage of Earth Observation satellite technology for monitoring wetlands in one of the most significant parts not only in Turkey, but in Western Asia. Along with a brief literature review about wetlands and remote sensing, this chapter investigates the water areas in Tigris and Euphrates Watershed in Turkey using Landsat-8 satellite imagery. The historical investigation showed significant development in the studied area with the several dam constructions in the watershed. The usage of satellite technology is crucial to longā€term water planning and management that incorporate principles of sustainability to avoid ecological and environmental catastrophes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Avdan U, Jovanovska G (2016) Algorithm for automated mapping of land surface temperature using LANDSAT 8 satellite data. J Sens 2016

    Google ScholarĀ 

  • Baumgartner MF, Apfl GM (1996) Remote sensing and geographic information systems. Hydrol Sci J 41(4):593ā€“607

    ArticleĀ  Google ScholarĀ 

  • Cardoso GF, Souza C, Souza PWM (2014) Using spectral analysis of Landsat-5 TM images to map coastal wetlands in the Amazon River mouth, Brazil. Wetl Ecol Manag 22(1):79ā€“92

    ArticleĀ  Google ScholarĀ 

  • Chen YY, He XF, Wang J (2015) Classification of coastal wetlands in eastern China using polarimetric SAR data. Arab J Geosci 8(12):10203ā€“10211

    ArticleĀ  Google ScholarĀ 

  • Ciritci D, TĆ¼rk T (2019) Automatic Detection of Shoreline Change by Geographical Information System (GIS) and Remote Sensing in the Gƶksu Delta, Turkey. J Indian Soc Remote Sens 47(2):233ā€“243

    ArticleĀ  Google ScholarĀ 

  • Dabrowska-Zielinska K et al (2016) Assessment of carbon flux and soil moisture in wetlands applying sentinel-1 data. Remote Sens 8(9)

    Google ScholarĀ 

  • Dervisoglu A, et al (2019) Temporal assessment of natural wetlands via remotely sensed data: a case study from Turkey. Fresenius Environ Bull 1005

    Google ScholarĀ 

  • Dong ZY et al (2014) Mapping wetland areas using landsat-derived NDVI and LSWI: a case study of West Songnen plain, Northeast China. J Indian Soc Remote Sens 42(3):569ā€“576

    ArticleĀ  Google ScholarĀ 

  • Dronova I (2015) Object-based image analysis in wetland research: A review. Remote Sens 7(5):6380ā€“6413

    ArticleĀ  Google ScholarĀ 

  • Ekercin S, Ɩrmeci C (2010) Evaluating climate change effects on water and salt resources in Salt Lake, Turkey using multitemporal SPOT imagery. Environ Monit Assess 163(1ā€“4):361ā€“368

    ArticleĀ  Google ScholarĀ 

  • Esetlili MT et al (2018) Comparison of object and pixel-based classifications for mapping crops using Rapideye imagery: a case study of Menemen Plain, Turkey. Int J Environ Geoinformatics 5(2):231ā€“243

    ArticleĀ  Google ScholarĀ 

  • FatihTemiz AB, Durduran SS, Gumus MG (2017) Monitoring coastline change using remote sensing and gis technology: a case study of Burdur Lake, Turkey. Fresen Environ Bullet:7235

    Google ScholarĀ 

  • Fickas KC, Cohen WB, Yang ZQ (2016) Landsat-based monitoring of annual wetland change in the Willamette Valley of Oregon, USA from 1972 to 2012. Wetl Ecol Manag 24(1):73ā€“92

    ArticleĀ  Google ScholarĀ 

  • Hardisky M, Gross M, Klemas V (1986) Remote sensing of coastal wetlands. Bioscience 36(7):453ā€“460

    ArticleĀ  Google ScholarĀ 

  • Harken J, Sugumaran R (2005) Classification of Iowa wetlands using an airborne hyperspectral image: a comparison of the spectral angle mapper classifier and an object-oriented approach. Can J Remote Sens 31(2):167ā€“174

    ArticleĀ  Google ScholarĀ 

  • Huang CQ et al (2014) Wetland inundation mapping and change monitoring using Landsat and airborne LiDAR data. Remote Sens Environ 141:231ā€“242

    ArticleĀ  Google ScholarĀ 

  • Hurd JD et al (2005) Coastal marsh characterization using satellite remote sensing and in situ radiometry data: preliminary results. American Society of Photogrammetry and Remote Sensing, Baltimore

    Google ScholarĀ 

  • Ji W (2007) Wetland and water resource modeling and assessment: a watershed perspective. CRC Press, Boca Raton

    BookĀ  Google ScholarĀ 

  • Jovanovska G et al (2016) Land surface temperature change after construction of the Kozjak Dam based on remote sensing data

    BookĀ  Google ScholarĀ 

  • Kamal M, Phinn S (2011) Hyperspectral data for mangrove species mapping: a comparison of pixel-based and object-based approach. Remote Sens 3(10):2222ā€“2242

    ArticleĀ  Google ScholarĀ 

  • Kaplan G (2019) Remote sensing image fusion for mapping and monitoring wetlands in anatolian region, Turkey. PhD thesis

    Google ScholarĀ 

  • Kaplan G, Avdan U (2017) Object-based water body extraction model using Sentinel-2 satellite imagery. Eur J Remote Sens 50(1):137ā€“143

    ArticleĀ  Google ScholarĀ 

  • Kaplan G, Avdan U (2018a) SENTINEL-1 and SENTINEL-2 data fusion for wetlands mapping: Balikdami, Turkey. Int Arch Photogr Remote Sens Spat Inf Sci 42(3)

    Google ScholarĀ 

  • Kaplan G, Avdan U (2018b) Monthly analysis of wetlands dynamics using remote sensing data. ISPRS Int J Geo Inf 7(10):411

    ArticleĀ  Google ScholarĀ 

  • Kaplan G, Avdan U (2019) Evaluating the utilization of the red edge and radar bands from sentinel sensors for wetland classification. Catena 178:109ā€“119

    ArticleĀ  Google ScholarĀ 

  • Kaplan G, Avdan, ZY, Avdan U (2019) Mapping and monitoring wetland dynamics using thermal, optical, and SAR remote sensing data. Wetlands management: assessing risk and sustainable solutions. p 87

    Google ScholarĀ 

  • Kaplan G, et al (n.d.) Drought monitoring using landsat satellite images (Case Study Aksehir Lake) (In Turkish) UZAL-CBS2016 Symposium, Adana, Turkey

    Google ScholarĀ 

  • Kesikoglu MH et al (2019) Performance of ANN, SVM and MLH techniques for land use/cover change detection at Sultan Marshes wetland, Turkey. Water Sci Technol 80(3):466ā€“477

    ArticleĀ  Google ScholarĀ 

  • Li JH, Chen WJ (2005) A rule-based method for mapping Canada's wetlands using optical, radar and DEM data. Int J Remote Sens 26(22):5051ā€“5069

    ArticleĀ  Google ScholarĀ 

  • Lulla K (1983) The Landsat satellites and selected aspects of physical geography. Prog Phys Geogr 7(1):1ā€“45

    ArticleĀ  Google ScholarĀ 

  • Maillard P, Pivari MO, Luis CHP (2012) Remote sensing for mapping and monitoring wetlands and small lakes in Southeast Brazil. Remote sensing of planet earth. Rijeka, InTech, pp 23ā€“46

    Google ScholarĀ 

  • Mitsch WJ, Gosselink JG (2015) Wetlands. Wiley, New York, 736 pp. In: ISBN978-1-118-67682-0

    Google ScholarĀ 

  • Musaoglu N et al (2018) Long-term monitoring of wetlands via remote sensing and GIS: a case study from Turkey. In: Proceedings of The International Conference on Climate Change

    Google ScholarĀ 

  • Myint SW et al (2008) Identifying mangrove species and their surrounding land use and land cover classes using an object-oriented approach with a lacunarity spatial measure. GISci Remote Sens 45(2):188ā€“208

    ArticleĀ  Google ScholarĀ 

  • Ozesmi SL, Bauer ME (2002) Satellite remote sensing of wetlands. Wetl Ecol Manag 10(5):381ā€“402

    ArticleĀ  Google ScholarĀ 

  • Russi D et al (2013) The economics of ecosystems and biodiversity for water and wetlands. IEEP, London and Brussels, p 78

    Google ScholarĀ 

  • Rutchey K, Vilchek L (1994) Development of an Everglades vegetation map using a SPOT image and the Global Positioning System. Photogramm Eng Remote Sens 60(6):767ā€“775

    Google ScholarĀ 

  • WWAP U (2003) UN World Water Development Report: Water for People. Water for Life

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaplan, G., Avdan, Z.Y., Avdan, U. (2021). Usage of Satellite Technology in Monitoring the Wetlands of Turkey, Tigris, and Euphrates Watershed. In: Jawad, L.A. (eds) Southern Iraq's Marshes. Coastal Research Library, vol 36. Springer, Cham. https://doi.org/10.1007/978-3-030-66238-7_10

Download citation

Publish with us

Policies and ethics