Skip to main content

Congenital Cystic Lesions of the Biliary Tree

  • Chapter
  • First Online:
Diseases of the Liver and Biliary Tree

Abstract

Fibropolycystic liver diseases (FPLDs) encompass a heterogeneous group of rare, congenital disorders of the biliary tree deriving from an abnormal embryogenesis of the primordial ductal plate caused by a genetically determined dysfunction of morphogenetic proteins expressed in the primary cilia of cholangiocytes (“ciliopathies”). Among this group, it is important to notice three different clusters of disease: polycystic liver diseases (PLDs), fibrocystic liver diseases (FLDs), and choledochal cysts (CCs). PLDs are characterized by the development of multiple (>20) fluid-filled biliary cysts widespread throughout liver parenchyma and disconnected from biliary tree. The natural history of PLDs is characterized by growth of cyst during adult age, leading to debilitating hepatomegaly. The ductal dysgenesis may affect, in FLDs, the biliary system at multiple levels, from the small intrahepatic bile ducts (congenital hepatic fibrosis) to the larger intrahepatic bile ducts (Caroli’s disease or Caroli’s syndrome, when Caroli’s disease coexists with congenital hepatic fibrosis), leading to biliary microhamartomas and segmental bile duct dilations, accompanied by progressive fibrogenesis. These fundamental lesions are the hallmark of FLDs and are responsible for the major complications, such as portal hypertension, cholestasis, recurrent cholangitis, sepsis, and cholangiocarcinoma. CCs are congenital alterations resulting from ductal plate malformation, involving the largest intra or extrahepatic bile ducts that mainly affect a paediatric population. Early surgical intervention is pivotal to avoid complications related to obstructive frame, ab extrinseco compression, rupture or malignant evolution. FPLDs often associate with a spectrum of disorders affecting many organs, primarily the kidney, and thus they are collectively termed hepatorenal fibrocystic disease (HRFCD). Among them, the autosomal-dominant and recessive polycystic kidney disease (ARPKD) is the most frequently associated disease, respectively to PLD and CHF, and the renal function impairment is central in disease progression. Since FPLDs are still orphan diseases, liver transplantation represents the only curative approach in advanced cases. Recent experimental evidence supports the strong translational relevance of these diseases as models for understanding the mechanisms of liver repair and unveiling potential therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. van Aerts RMM, van de Laarschot LFM, Banales JM, Drenth JPH. Clinical management of polycystic liver disease. J Hepatol. 2018;68(4):827–37.

    Article  PubMed  Google Scholar 

  2. Fabris L, Fiorotto R, Spirli C, Cadamuro M, Mariotti V, Perugorria MJ, et al. Pathobiology of inherited biliary diseases: a roadmap to understand acquired liver diseases. Nat Rev Gastroenterol Hepatol. 2019;16(8):497–511.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Gunay-Aygun M. Liver and kidney disease in ciliopathies. Am J Med Genet C Semin Med Genet. 2009;151C(4):296–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gascue C, Katsanis N, Badano JL. Cystic diseases of the kidney: ciliary dysfunction and cystogenic mechanisms. Pediatr Nephrol. 2011;26(8):1181–95.

    Article  PubMed  Google Scholar 

  5. Avidor-Reiss T, Maer AM, Koundakjian E, Polyanovsky A, Keil T, Subramaniam S, et al. Decoding cilia function: defining specialized genes required for compartmentalized cilia biogenesis. Cell. 2004;117(4):527–39.

    Article  CAS  PubMed  Google Scholar 

  6. Fliegauf M, Benzing T, Omran H. When cilia go bad: cilia defects and ciliopathies. Nat Rev Mol Cell Biol. 2007;8(11):880–93.

    Article  CAS  PubMed  Google Scholar 

  7. Mahjoub MR. The importance of a single primary cilium. Organogenesis. 2013;9(2):61–9.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Rock N, McLin V. Liver involvement in children with ciliopathies. Clin Res Hepatol Gastroenterol. 2014;38(4):407–14.

    Article  CAS  PubMed  Google Scholar 

  9. Strazzabosco M, Fabris L. Development of the bile ducts: essentials for the clinical hepatologist. J Hepatol. 2012;56(5):1159–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Roskams T, Desmet V. Embryology of extra and intrahepatic bile ducts, the ductal plate. Anat Rec (Hoboken). 2008;291(6):628–35.

    Article  CAS  Google Scholar 

  11. Santiago I, Loureiro R, Curvo-Semedo L, Marques C, Tardáguila F, Matos C, et al. Congenital cystic lesions of the biliary tree. AJR Am J Roentgenol. 2012;198(4):825–35.

    Article  PubMed  Google Scholar 

  12. The European Polycystic Kidney Disease Consortium. The polycystic kidney disease 1 gene encodes a 14 kb transcript and lies within a duplicated region on chromosome 16. Cell. 1994;78(4):725.

    Google Scholar 

  13. Mochizuki T, Wu G, Hayashi T, Xenophontos SL, Veldhuisen B, Saris JJ, et al. PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. Science. 1996;272(5266):1339–42.

    Article  CAS  PubMed  Google Scholar 

  14. Strazzabosco M, Somlo S. Polycystic liver diseases: congenital disorders of cholangiocyte signaling. Gastroenterology. 2011;140(7):1855–1859.e1.

    Article  CAS  PubMed  Google Scholar 

  15. Masyuk AI, Masyuk TV, Splinter PL, Huang BQ, Stroope AJ, LaRusso NF. Cholangiocyte cilia detect changes in luminal fluid flow and transmit them into intracellular Ca2+ and cAMP signaling. Gastroenterology. 2006;131(3):911–20.

    Article  CAS  PubMed  Google Scholar 

  16. Drenth JPH, te Morsche RHM, Smink R, Bonifacino JS, Jansen JBMJ. Germline mutations in PRKCSH are associated with autosomal-dominant polycystic liver disease. Nat Genet. 2003;33(3):345–7.

    Article  CAS  PubMed  Google Scholar 

  17. Davila S, Furu L, Gharavi AG, Tian X, Onoe T, Qian Q, et al. Mutations in SEC63 cause autosomal-dominant polycystic liver disease. Nat Genet. 2004;36(6):575–7.

    Article  CAS  PubMed  Google Scholar 

  18. Besse W, Dong K, Choi J, Punia S, Fedeles SV, Choi M, et al. Isolated polycystic liver disease genes define effectors of polycystin-1 function. J Clin Invest. 2017;127(5):1772–85.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Porath B, Gainullin VG, Cornec-Le Gall E, Dillinger EK, Heyer CM, Hopp K, et al. Mutations in GANAB, encoding the glucosidase IIα subunit, cause autosomal-dominant polycystic kidney and liver disease. Am J Hum Genet. 2016;98(6):1193–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cnossen WR, te Morsche RHM, Hoischen A, Gilissen C, Chrispijn M, Venselaar H, et al. Whole-exome sequencing reveals LRP5 mutations and canonical Wnt signaling associated with hepatic cystogenesis. Proc Natl Acad Sci U S A. 2014;111(14):5343–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fedeles SV, Tian X, Gallagher A-R, Mitobe M, Nishio S, Lee SH, et al. A genetic interaction network of five genes for human polycystic kidney and liver diseases defines polycystin-1 as the central determinant of cyst formation. Nat Genet. 2011;43(7):639–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Janssen MJ, Waanders E, Te Morsche RHM, Xing R, Dijkman HBPM, Woudenberg J, et al. Secondary, somatic mutations might promote cyst formation in patients with autosomal-dominant polycystic liver disease. Gastroenterology. 2011;141(6):2056–2063.e2.

    Article  CAS  PubMed  Google Scholar 

  23. Chebib FT, Jung Y, Heyer CM, Irazabal MV, Hogan MC, Harris PC, et al. Effect of genotype on the severity and volume progression of polycystic liver disease in autosomal-dominant polycystic kidney disease. Nephrol Dial Transplant. 2016;31(6):952–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Van Keimpema L, De Koning DB, Van Hoek B, Van Den Berg AP, Van Oijen MGH, De Man RA, et al. Patients with isolated polycystic liver disease referred to liver centres: clinical characterization of 137 cases. Liver Int. 2011;31(1):92–8.

    Article  PubMed  Google Scholar 

  25. Banales JM, Masyuk TV, Gradilone SA, Masyuk AI, Medina JF, LaRusso NF. The cAMP effectors Epac and protein kinase a (PKA) are involved in the hepatic cystogenesis of an animal model of autosomal-recessive polycystic kidney disease (ARPKD). Hepatology. 2009;49(1):160–74.

    Article  CAS  PubMed  Google Scholar 

  26. Masyuk AI, Masyuk TV, Pisarello MJL, Ding JF, Loarca L, Huang BQ, et al. Cholangiocyte autophagy contributes to hepatic cystogenesis in polycystic liver disease and represents a potential therapeutic target. Hepatology. 2018;67(3):1088–108.

    Article  CAS  PubMed  Google Scholar 

  27. Beaudry J-B, Cordi S, Demarez C, Lepreux S, Pierreux CE, Lemaigre FP. Proliferation-independent initiation of biliary cysts in polycystic liver diseases. PLoS One. 2015;10(6):e0132295.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Spirli C, Morell CM, Locatelli L, Okolicsanyi S, Ferrero C, Kim AK, et al. Cyclic AMP/PKA-dependent paradoxical activation of Raf/MEK/ERK signaling in polycystin-2 defective mice treated with sorafenib. Hepatology. 2012;56(6):2363–74.

    Article  CAS  PubMed  Google Scholar 

  29. Spirli C, Mariotti V, Villani A, Fabris L, Fiorotto R, Strazzabosco M. Adenylyl cyclase 5 links changes in calcium homeostasis to cAMP-dependent cyst growth in polycystic liver disease. J Hepatol. 2017;66(3):571–80.

    Article  CAS  PubMed  Google Scholar 

  30. Fabris L, Cadamuro M, Fiorotto R, Roskams T, Spirlì C, Melero S, et al. Effects of angiogenic factor overexpression by human and rodent cholangiocytes in polycystic liver diseases. Hepatology. 2006;43(5):1001–12.

    Article  CAS  PubMed  Google Scholar 

  31. Amura CR, Brodsky KS, Groff R, Gattone VH, Voelkel NF, Doctor RB. VEGF receptor inhibition blocks liver cyst growth in pkd2(WS25/-) mice. Am J Physiol Cell Physiol. 2007;293(1):C419–28.

    Article  CAS  PubMed  Google Scholar 

  32. Spirli C, Okolicsanyi S, Fiorotto R, Fabris L, Cadamuro M, Lecchi S, et al. ERK1/2-dependent vascular endothelial growth factor signaling sustains cyst growth in polycystin-2 defective mice. Gastroenterology. 2010;138(1):360–371.e7.

    Article  CAS  PubMed  Google Scholar 

  33. Kaffe E, Fiorotto R, Pellegrino F, Mariotti V, Amenduni M, Cadamuro M, et al. β-Catenin and interleukin-1β–dependent chemokine (C-X-C motif) ligand 10 production drives progression of disease in a mouse model of congenital hepatic fibrosis. Hepatology. 2018;67(5):1903–19.

    Article  CAS  PubMed  Google Scholar 

  34. Locatelli L, Cadamuro M, Spirlì C, Fiorotto R, Lecchi S, Morell CM, et al. Macrophage recruitment by fibrocystin-defective biliary epithelial cells promotes portal fibrosis in congenital hepatic fibrosis. Hepatology. 2016;63(3):965–82.

    Article  CAS  PubMed  Google Scholar 

  35. Paka P, Huang B, Duan B, Li J-S, Zhou P, Paka L, et al. A small molecule fibrokinase inhibitor in a model of fibropolycystic hepatorenal disease. World J Nephrol. 2018;7(5):96–107.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Rossetti S, Harris PC. Genotype-phenotype correlations in autosomal-dominant and autosomal-recessive polycystic kidney disease. J Am Soc Nephrol. 2007;18(5):1374–80.

    Article  CAS  PubMed  Google Scholar 

  37. Hartung EA, Guay-Woodford LM. Autosomal-recessive polycystic kidney disease: a hepatorenal fibrocystic disorder with pleiotropic effects. Pediatrics. 2014;134(3):e833–45.

    Article  PubMed  PubMed Central  Google Scholar 

  38. humgen.rwth-aachen.de—Database [Internet]. [cited 2020 Mar 31]. http://www.humgen.rwth-aachen.de/index.php?page=database.

  39. Cano DA, Murcia NS, Pazour GJ, Hebrok M. Orpk mouse model of polycystic kidney disease reveals essential role of primary cilia in pancreatic tissue organization. Development. 2004;131(14):3457–67.

    Article  CAS  PubMed  Google Scholar 

  40. Gevers TJG, Drenth JPH. Diagnosis and management of polycystic liver disease. Nat Rev Gastroenterol Hepatol. 2013;10(2):101–8.

    Article  CAS  PubMed  Google Scholar 

  41. Cnossen WR, Drenth JP. Polycystic liver disease: an overview of pathogenesis, clinical manifestations and management. Orphanet J Rare Dis. 2014;9(1):69.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hoevenaren IA, Wester R, Schrier RW, McFann K, Doctor RB, Drenth JPH, et al. Polycystic liver: clinical characteristics of patients with isolated polycystic liver disease compared with patients with polycystic liver and autosomal-dominant polycystic kidney disease. Liver Int. 2008;28(2):264–70.

    Article  PubMed  Google Scholar 

  43. Perugorria MJ, Banales JM. Genetics: novel causative genes for polycystic liver disease. Nat Rev Gastroenterol Hepatol. 2017;14(7):391–2.

    Article  CAS  PubMed  Google Scholar 

  44. van Aerts RMM, Kievit W, de Jong ME, Ahn C, Bañales JM, Reiterová J, et al. Severity in polycystic liver disease is associated with aetiology and female gender: results of the International PLD Registry. Liver Int. 2019;39(3):575–82.

    Article  PubMed  CAS  Google Scholar 

  45. Kim H, Park HC, Ryu H, Kim K, Kim HS, Oh K-H, et al. Clinical correlates of mass effect in autosomal-dominant polycystic kidney disease. PLoS One. 2015;10(12):e0144526.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Barbier L, Ronot M, Aussilhou B, Cauchy F, Francoz C, Vilgrain V, et al. Polycystic liver disease: hepatic venous outflow obstruction lesions of the noncystic parenchyma have major consequences. Hepatology. 2018;68(2):652–62.

    Article  PubMed  Google Scholar 

  47. Timio M, Monarca C, Pede S, Gentili S, Verdura C, Lolli S. The spectrum of cardiovascular abnormalities in autosomal-dominant polycystic kidney disease: a 10-year follow-up in a five-generation kindred. Clin Nephrol. 1992;37(5):245–51.

    CAS  PubMed  Google Scholar 

  48. Luciano RL, Dahl NK. Extra-renal manifestations of autosomal-dominant polycystic kidney disease (ADPKD): considerations for routine screening and management. Nephrol Dial Transplant. 2014;29(2):247–54.

    Article  PubMed  Google Scholar 

  49. Harris T, Sandford R, EAF members, Roundtable participants. European ADPKD Forum multidisciplinary position statement on autosomal-dominant polycystic kidney disease care: European ADPKD Forum and Multispecialist Roundtable participants. Nephrol Dial Transplant. 2018;33(4):563–73.

    Google Scholar 

  50. Bae KT, Zhu F, Chapman AB, Torres VE, Grantham JJ, Guay-Woodford LM, et al. Magnetic resonance imaging evaluation of hepatic cysts in early autosomal-dominant polycystic kidney disease: the consortium for radiologic imaging studies of polycystic kidney disease cohort. Clin J Am Soc Nephrol. 2006;1(1):64–9.

    Article  PubMed  Google Scholar 

  51. Gigot JF, Jadoul P, Que F, Van Beers BE, Etienne J, Horsmans Y, et al. Adult polycystic liver disease: is fenestration the most adequate operation for long-term management? Ann Surg. 1997;225(3):286–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Schnelldorfer T, Torres VE, Zakaria S, Rosen CB, Nagorney DM. Polycystic liver disease: a critical appraisal of hepatic resection, cyst fenestration, and liver transplantation. Ann Surg. 2009;250(1):112–8.

    Article  PubMed  Google Scholar 

  53. Temmerman F, Dobbels F, Ho TA, Pirson Y, Vanslembrouck R, Coudyzer W, et al. Development and validation of a polycystic liver disease complaint-specific assessment (POLCA). J Hepatol. 2014;61(5):1143–50.

    Article  PubMed  Google Scholar 

  54. Neijenhuis MK, Gevers TJG, Hogan MC, Kamath PS, Wijnands TFM, van den Ouweland RCPM, et al. Development and validation of a disease-specific questionnaire to assess patient-reported symptoms in polycystic liver disease. Hepatology. 2016;64(1):151–60.

    Article  PubMed  Google Scholar 

  55. Fong ZV, Wolf AM, Doria C, Berger AC, Rosato EL, Palazzo F. Hemorrhagic hepatic cyst: report of a case and review of the literature with emphasis on clinical approach and management. J Gastrointest Surg. 2012;16(9):1782–9.

    Article  PubMed  Google Scholar 

  56. Lantinga MA, Drenth JPH, Gevers TJG. Diagnostic criteria in renal and hepatic cyst infection. Nephrol Dial Transplant. 2015;30(5):744–51.

    Article  CAS  PubMed  Google Scholar 

  57. Marion Y, Brevartt C, Plard L, Chiche L. Hemorrhagic liver cyst rupture: an unusual life-threatening complication of hepatic cyst and literature review. Ann Hepatol. 2013;12(2):336–9.

    Article  PubMed  Google Scholar 

  58. Macutkiewicz C, Plastow R, Chrispijn M, Filobbos R, Ammori BA, Sherlock DJ, et al. Complications arising in simple and polycystic liver cysts. World J Hepatol. 2012;4(12):406–11.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Masyuk TV, Masyuk AI, LaRusso NF. Therapeutic targets in polycystic liver disease. CDT. 2017;18(8):950–7.

    Article  CAS  Google Scholar 

  60. Wijnands TFM, Görtjes APM, Gevers TJG, Jenniskens SFM, Kool LJS, Potthoff A, et al. Efficacy and safety of aspiration sclerotherapy of simple hepatic cysts: a systematic review. AJR Am J Roentgenol. 2017;208(1):201–7.

    Article  PubMed  Google Scholar 

  61. Drenth JPH, Chrispijn M, Nagorney DM, Kamath PS, Torres VE. Medical and surgical treatment options for polycystic liver disease. Hepatology. 2010;52(6):2223–30.

    Article  PubMed  Google Scholar 

  62. Chebib FT, Harmon A, Irazabal Mira MV, Jung YS, Edwards ME, Hogan MC, et al. Outcomes and durability of hepatic reduction after combined partial hepatectomy and cyst fenestration for massive polycystic liver disease. J Am Coll Surg. 2016;223(1):118–126.e1.

    Article  PubMed  PubMed Central  Google Scholar 

  63. van Keimpema L, Nevens F, Adam R, Porte RJ, Fikatas P, Becker T, et al. Excellent survival after liver transplantation for isolated polycystic liver disease: an European Liver Transplant Registry study. Transpl Int. 2011;24(12):1239–45.

    Article  PubMed  Google Scholar 

  64. Freeman RB, Gish RG, Harper A, Davis GL, Vierling J, Lieblein L, et al. Model for end-stage liver disease (MELD) exception guidelines: results and recommendations from the MELD Exception Study Group and Conference (MESSAGE) for the approval of patients who need liver transplantation with diseases not considered by the standard MELD formula. Liver Transpl. 2006;12(12 Suppl 3):S128–36.

    Article  PubMed  Google Scholar 

  65. Coquillard C, Berger J, Daily M, Shah M, Mei X, Marti F, et al. Combined liver-kidney transplantation for polycystic liver and kidney disease: analysis from the United Network for Organ Sharing dataset. Liver Int. 2016;36(7):1018–25.

    Article  PubMed  Google Scholar 

  66. Adeva M, El-Youssef M, Rossetti S, Kamath PS, Kubly V, Consugar MB, et al. Clinical and molecular characterization defines a broadened spectrum of autosomal-recessive polycystic kidney disease (ARPKD). Medicine (Baltimore). 2006;85(1):1–21.

    Article  Google Scholar 

  67. de Tommaso AMA, Santos DSM, Hessel G. Caroli’s disease: 6 case studies. Acta Gastroenterol Latinoam. 2003;33(1):47–51.

    PubMed  Google Scholar 

  68. Zerres K, Rudnik-Schöneborn S, Deget F, Holtkamp U, Brodehl J, Geisert J, et al. Autosomal-recessive polycystic kidney disease in 115 children: clinical presentation, course and influence of gender. Arbeitsgemeinschaft für Pädiatrische, Nephrologie. Acta Paediatr. 1996;85(4):437–45.

    Article  CAS  PubMed  Google Scholar 

  69. Roy S, Dillon MJ, Trompeter RS, Barratt TM. Autosomal-recessive polycystic kidney disease: long-term outcome of neonatal survivors. Pediatr Nephrol. 1997;11(3):302–6.

    Article  CAS  PubMed  Google Scholar 

  70. Guay-Woodford LM, Desmond RA. Autosomal-recessive polycystic kidney disease: the clinical experience in North America. Pediatrics. 2003;111(5 Pt 1):1072–80.

    Article  PubMed  Google Scholar 

  71. Telega G, Cronin D, Avner ED. New approaches to the autosomal-recessive polycystic kidney disease patient with dual kidney-liver complications. Pediatr Transplant. 2013;17(4):328–35.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Bergmann C, Senderek J, Windelen E, Küpper F, Middeldorf I, Schneider F, et al. Clinical consequences of PKHD1 mutations in 164 patients with autosomal-recessive polycystic kidney disease (ARPKD). Kidney Int. 2005;67(3):829–48.

    Article  CAS  PubMed  Google Scholar 

  73. Cannella R, Giambelluca D, Diamarco M, Caruana G, Cutaia G, Midiri M, et al. Congenital cystic lesions of the bile ducts: imaging-based diagnosis. Curr Probl Diagn Radiol. 2020;49(4):285–93. https://doi.org/10.1067/j.cpradiol.2019.04.005. PMID: 31027922.

  74. Kumar S, Rankin R. Renal insufficiency is a component of COACH syndrome. Am J Med Genet. 1996;61(2):122–6.

    Article  CAS  PubMed  Google Scholar 

  75. Parisi MA. The molecular genetics of Joubert syndrome and related ciliopathies: the challenges of genetic and phenotypic heterogeneity. Transl Sci Rare Dis. 2019;4(1–2):25–49.

    PubMed  PubMed Central  Google Scholar 

  76. Rivas A, Epelman M, Danzer E, Adzick NS, Victoria T. Prenatal MR imaging features of Caroli syndrome in association with autosomal-recessive polycystic kidney disease. Radiol Case Rep. 2019;14(2):265–8.

    Article  PubMed  Google Scholar 

  77. Hartung EA, Wen J, Poznick L, Furth SL, Darge K. Ultrasound elastography to quantify liver disease severity in autosomal-recessive polycystic kidney disease. J Pediatr. 2019;209:107–115.e5.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Alsomali MI, Yearsley MM, Levin DM, Chen W. Diagnosis of congenital hepatic fibrosis in adulthood. Am J Clin Pathol. 2020;153(1):119–25.

    Article  PubMed  Google Scholar 

  79. Angeli P, Bernardi M, Villanueva C, Francoz C, Mookerjee RP, Trebicka J, et al. EASL clinical practice guidelines for the management of patients with decompensated cirrhosis. J Hepatol. 2018;69(2):406–60.

    Article  Google Scholar 

  80. Kruis T, Güse-Jaschuck S, Siegmund B, Adam T, Epple H-J. Use of microbiological and patient data for choice of empirical antibiotic therapy in acute cholangitis. BMC Gastroenterol. 2020;20(1):65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Labib PL, Goodchild G, Pereira SP. Molecular pathogenesis of cholangiocarcinoma. BMC Cancer. 2019;19:185. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6394015/.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Srinath A, Shneider BL. Congenital hepatic fibrosis and autosomal-recessive polycystic kidney disease. J Pediatr Gastroenterol Nutr. 2012;54(5):580–7.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Shneider BL, Bosch J, de Franchis R, Emre SH, Groszmann RJ, Ling SC, et al. Portal hypertension in children: expert pediatric opinion on the report of the Baveno V Consensus Workshop on Methodology of Diagnosis and Therapy in Portal Hypertension. Pediatr Transplant. 2012;16(5):426–37.

    Article  CAS  PubMed  Google Scholar 

  84. Tsimaratos M, Cloarec S, Roquelaure B, Retornaz K, Picon G, Chabrol B, et al. Chronic renal failure and portal hypertension—is portosystemic shunt indicated? Pediatr Nephrol. 2000;14(8–9):856–8.

    Article  CAS  PubMed  Google Scholar 

  85. Verbeeck S, Mekhali D, Cassiman D, Maleux G, Witters P. Long-term outcome of transjugular intrahepatic portosystemic shunt for portal hypertension in autosomal-recessive polycystic kidney disease. Dig Liver Dis. 2018;50(7):707–12.

    Article  PubMed  Google Scholar 

  86. Guay-Woodford LM, Bissler JJ, Braun MC, Bockenhauer D, Cadnapaphornchai MA, Dell KM, et al. Consensus expert recommendations for the diagnosis and management of autosomal-recessive polycystic kidney disease: report of an international conference. J Pediatr. 2014;165(3):611–7.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Ros E, Navarro S, Bru C, Gilabert R, Bianchi L, Bruguera M. Ursodeoxycholic acid treatment of primary hepatolithiasis in Caroli’s syndrome. Lancet. 1993;342(8868):404–6.

    Article  CAS  PubMed  Google Scholar 

  88. Dayton MT, Longmire WP, Tompkins RK. Caroli’s disease: a premalignant condition? Am J Surg. 1983;145(1):41–8.

    Article  CAS  PubMed  Google Scholar 

  89. Mabrut J-Y, Kianmanesh R, Nuzzo G, Castaing D, Boudjema K, Létoublon C, et al. Surgical management of congenital intrahepatic bile duct dilatation, Caroli’s disease and syndrome: long-term results of the French Association of Surgery Multicenter Study. Ann Surg. 2013;258(5):713–21; discussion 721.

    Article  PubMed  Google Scholar 

  90. Jang MH, Lee YJ, Kim H. Intrahepatic cholangiocarcinoma arising in Caroli’s disease. Clin Mol Hepatol. 2014;20(4):402–5.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Rosen CB, Heimbach JK, Gores GJ. Liver transplantation for cholangiocarcinoma. Transpl Int. 2010;23(7):692–7.

    Article  PubMed  Google Scholar 

  92. Yamaguchi T, Cristaudi A, Kokudo T, Uldry E, Demartines N, Halkic N. Surgical treatment for monolobular Caroli’s disease—report of a 30-year single center case series. BioSci Trends. 2018;12:426–31.

    Article  PubMed  Google Scholar 

  93. Mabrut J-Y, Partensky C, Jaeck D, Oussoultzoglou E, Baulieux J, Boillot O, et al. Congenital intrahepatic bile duct dilatation is a potentially curable disease: long-term results of a multi-institutional study. Ann Surg. 2007;246(2):236–45.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Fahrner R, Dennler SGC, Dondorf F, Ardelt M, Rauchfuss F, Settmacher U. Liver resection and transplantation in Caroli’s disease and syndrome. J Visc Surg. 2019;156(2):91–5.

    Article  CAS  PubMed  Google Scholar 

  95. Lai Q, Lerut J. Proposal for an algorithm for liver transplantation in Caroli’s disease and syndrome: putting an uncommon effort into a common task. Clin Transpl. 2016;30(1):3–9.

    Article  Google Scholar 

  96. Harring TR, Nguyen NTT, Liu H, Goss JA, O’Mahony CA. Caroli’s disease patients have excellent survival after liver transplant. J Surg Res. 2012;177(2):365–72.

    Article  PubMed  Google Scholar 

  97. Habib S, Shakil O, Couto OF, Demetris AJ, Fung JJ, Marcos A, et al. Caroli’s disease and orthotopic liver transplantation. Liver Transpl. 2006;12(3):416–21.

    Article  PubMed  Google Scholar 

  98. Wen JW, Furth SL, Ruebner RL. Kidney and liver transplantation in children with fibrocystic liver-kidney disease: data from the US Scientific Registry of Transplant Recipients: 1990-2010. Pediatr Transplant. 2014;18(7):726–32.

    Article  PubMed  Google Scholar 

  99. Büscher R, Büscher AK, Cetiner M, Treckmann JW, Paul A, Vester U, et al. Combined liver and kidney transplantation and kidney after liver transplantation in children: indication, postoperative outcome, and long-term results. Pediatr Transplant. 2015;19(8):858–65.

    Article  PubMed  Google Scholar 

  100. Kitajima K, Ogawa Y, Miki K, Kai K, Sannomiya A, Iwadoh K, et al. Long-term renal allograft survival after sequential liver-kidney transplantation from a single living donor. Liver Transpl. 2017;23(3):315–23.

    Article  PubMed  Google Scholar 

  101. Rogers J, Bueno J, Shapiro R, Scantlebury V, Mazariegos G, Fung J, et al. Results of simultaneous and sequential pediatric liver and kidney transplantation. Transplantation. 2001;72(10):1666–70.

    Article  CAS  PubMed  Google Scholar 

  102. Astarcioglu I, Egeli T, Unek T, Akarsu M, Sagol O, Obuz F, et al. Liver transplant in patients with primary sclerosing cholangitis: long-term experience of a single center. Exp Clin Transplant. 2018;16(4):434–8.

    PubMed  Google Scholar 

  103. Todani T, Watanabe Y, Narusue M, Tabuchi K, Okajima K. Congenital bile duct cysts: classification, operative procedures, and review of thirty-seven cases including cancer arising from choledochal cyst. Am J Surg. 1977;134(2):263–9.

    Article  CAS  PubMed  Google Scholar 

  104. Todani T, Watanabe Y, Toki A, Morotomi Y. Classification of congenital biliary cystic disease: special reference to type Ic and IVA cysts with primary ductal stricture. J Hepato-Biliary-Pancreat Surg. 2003;10(5):340–4.

    Article  Google Scholar 

  105. Friedmacher F, Ford KE, Davenport M. Choledochal malformations: global research, scientific advances and key controversies. Pediatr Surg Int. 2019;35(3):273–82.

    Article  PubMed  Google Scholar 

  106. Wiseman K, Buczkowski AK, Chung SW, Francoeur J, Schaeffer D, Scudamore CH. Epidemiology, presentation, diagnosis, and outcomes of choledochal cysts in adults in an urban environment. Am J Surg. 2005;189(5):527–31; discussion 531.

    Article  PubMed  Google Scholar 

  107. Yamaguchi M. Congenital choledochal cyst. Analysis of 1433 patients in the Japanese literature. Am J Surg. 1980;140(5):653–7.

    Article  CAS  PubMed  Google Scholar 

  108. Söreide K, Körner H, Havnen J, Söreide JA. Bile duct cysts in adults. Br J Surg. 2004;91(12):1538–48.

    Article  PubMed  Google Scholar 

  109. Baison GN, Bonds MM, Helton WS, Kozarek RA. Choledochal cysts: similarities and differences between Asian and Western countries. World J Gastroenterol. 2019;25(26):3334–43.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Han SJ, Hwang EH, Chung KS, Kim MJ, Kim H. Acquired choledochal cyst from anomalous pancreatiobiliary duct union. J Pediatr Surg. 1997;32(12):1735–8.

    Article  CAS  PubMed  Google Scholar 

  111. Davenport M, Basu R. Under pressure: choledochal malformation manometry. J Pediatr Surg. 2005;40(2):331–5.

    Article  PubMed  Google Scholar 

  112. Soares KC, Kim Y, Spolverato G, Maithel S, Bauer TW, Marques H, et al. Presentation and clinical outcomes of choledochal cysts in children and adults: a multi-institutional analysis. JAMA Surg. 2015;150(6):577–84.

    Article  PubMed  Google Scholar 

  113. Fitoz S, Erden A, Boruban S. Magnetic resonance cholangiopancreatography of biliary system abnormalities in children. Clin Imaging. 2007;31(2):93–101.

    Article  PubMed  Google Scholar 

  114. Kim SH, Lim JH, Yoon HK, Han BK, Lee SK, Kim YI. Choledochal cyst: comparison of MR and conventional cholangiography. Clin Radiol. 2000;55(5):378–83.

    Article  CAS  PubMed  Google Scholar 

  115. Oduyebo I, Law JK, Zaheer A, Weiss MJ, Wolfgang C, Lennon AM. Choledochal or pancreatic cyst? Role of endoscopic ultrasound as an adjunct for diagnosis: a case series. Surg Endosc. 2015;29(9):2832–6.

    Article  PubMed  Google Scholar 

  116. Hiramatsu K, Paye F, Kianmanesh AR, Sauvanet A, Terris B, Belghiti J. Choledochal cyst and benign stenosis of the main pancreatic duct. J Hepato-Biliary-Pancreat Surg. 2001;8(1):92–4.

    Article  CAS  Google Scholar 

  117. Li M-J, Feng J-X, Jin Q-F. Early complications after excision with hepaticoenterostomy for infants and children with choledochal cysts. HBPD INT. 2002;1(2):281–4.

    PubMed  Google Scholar 

  118. Ramos A, Castelló J, Pinto I. Intestinal intussusception as a presenting feature of choledochocele. Gastrointest Radiol. 1990;15(3):211–4.

    Article  CAS  PubMed  Google Scholar 

  119. Arda IS, Tuzun M, Aliefendioglu D, Hicsonmez A. Spontaneous rupture of extrahepatic choledochal cyst: two pediatric cases and literature review. Eur J Pediatr Surg. 2005;15(5):361–3.

    Article  CAS  PubMed  Google Scholar 

  120. Diao M, Li L, Cheng W. Timing of choledochal cyst perforation. Hepatology. [cited 2020 Jan 28]. http://aasldpubs.onlinelibrary.wiley.com/doi/abs/10.1002/hep.30902.

  121. Stain SC, Guthrie CR, Yellin AE, Donovan AJ. Choledochal cyst in the adult. Ann Surg. 1995;222(2):128–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. ten Hove A, de Meijer VE, Hulscher JBF, de Kleine RHJ. Meta-analysis of risk of developing malignancy in congenital choledochal malformation. Br J Surg. 2018;105(5):482–90.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Chaudhary A, Dhar P, Sachdev A, Kumar N, Vij JC, Sarin SK, et al. Choledochal cysts—differences in children and adults. Br J Surg. 1996;83(2):186–8.

    CAS  PubMed  Google Scholar 

  124. Fabris L, Perugorria MJ, Mertens J, Björkström NK, Cramer T, Lleo A, et al. The tumour microenvironment and immune milieu of cholangiocarcinoma. Liver Int. 2019;39(S1):63–78.

    Article  PubMed  Google Scholar 

  125. He X-D, Wang L, Liu W, Liu Q, Qu Q, Li B-L, et al. The risk of carcinogenesis in congenital choledochal cyst patients: an analysis of 214 cases. Ann Hepatol. 2014;13(6):819–26.

    Article  PubMed  Google Scholar 

  126. Okada T, Sasaki F, Ueki S, Hirokata G, Okuyama K, Cho K, et al. Postnatal management for prenatally diagnosed choledochal cysts. J Pediatr Surg. 2004;39(7):1055–8.

    Article  PubMed  Google Scholar 

  127. Lee J-H, Kim S-H, Kim H-Y, Choi YH, Jung S-E, Park K-W. Early experience of laparoscopic choledochal cyst excision in children. J Korean Surg Soc. 2013;85(5):225–9.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Shimotakahara A, Yamataka A, Yanai T, Kobayashi H, Okazaki T, Lane GJ, et al. Roux-en-Y hepaticojejunostomy or hepaticoduodenostomy for biliary reconstruction during the surgical treatment of choledochal cyst: which is better? Pediatr Surg Int. 2005;21(1):5–7.

    Article  PubMed  Google Scholar 

  129. Zhen C, Xia Z, Long L, Lishuang M, Pu Y, Wenjuan Z, et al. Laparoscopic excision versus open excision for the treatment of choledochal cysts: a systematic review and meta-analysis. Int Surg. 2015;100(1):115–22.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Han JH, Lee JH, Hwang DW, Song KB, Shin SH, Kwon JW, et al. Robot resection of a choledochal cyst with Roux-en-y hepaticojejunostomy in adults: initial experiences with 22 cases and a comparison with laparoscopic approaches. Ann Hepatobiliary Pancreat Surg. 2018;22(4):359–66.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Acker SN, Bruny JL, Narkewicz MR, Roach JP, Rogers A, Karrer FM. Preoperative imaging does not predict intrahepatic involvement in choledochal cysts. J Pediatr Surg. 2013;48(12):2378–82.

    Article  PubMed  Google Scholar 

  132. Saeki I, Takahashi Y, Matsuura T, Takahata S, Tanaka M, Taguchi T. Successful endoscopic unroofing for a pediatric choledochocele. J Pediatr Surg. 2009;44(8):1643–5.

    Article  PubMed  Google Scholar 

  133. Fujishiro J, Masumoto K, Urita Y, Shinkai T, Gotoh C. Pancreatic complications in pediatric choledochal cysts. J Pediatr Surg. 2013;48(9):1897–902.

    Article  PubMed  Google Scholar 

  134. Miyano T, Yamataka A, Kato Y, Segawa O, Lane G, Takamizawa S, et al. Hepaticoenterostomy after excision of choledochal cyst in children: a 30-year experience with 180 cases. J Pediatr Surg. 1996;31(10):1417–21.

    Article  CAS  PubMed  Google Scholar 

  135. Todani T, Watanabe Y, Urushihara N, Noda T, Morotomi Y. Biliary complications after excisional procedure for choledochal cyst. J Pediatr Surg. 1995;30(3):478–81.

    Article  CAS  PubMed  Google Scholar 

  136. de Vries JS, de Vries S, Aronson DC, Bosman DK, Rauws E. a. J, Bosma a, et al. Choledochal cysts: age of presentation, symptoms, and late complications related to Todani’s classification. J Pediatr Surg. 2002;37(11):1568–73.

    Article  PubMed  Google Scholar 

  137. Masyuk TV, Radtke BN, Stroope AJ, Banales JM, Gradilone SA, Huang B, et al. Pasireotide is more effective than octreotide in reducing hepatorenal cystogenesis in rodents with polycystic kidney and liver diseases. Hepatology. 2013;58(1):409–21.

    Article  CAS  PubMed  Google Scholar 

  138. Masyuk TV, Masyuk AI, Torres VE, Harris PC, Larusso NF. Octreotide inhibits hepatic cystogenesis in a rodent model of polycystic liver disease by reducing cholangiocyte adenosine 3′,5′-cyclic monophosphate. Gastroenterology. 2007;132(3):1104–16.

    Article  CAS  PubMed  Google Scholar 

  139. Spirli C, Okolicsanyi S, Fiorotto R, Fabris L, Cadamuro M, Lecchi S, et al. Mammalian target of rapamycin regulates vascular endothelial growth factor–dependent liver cyst growth in polycystin-2–defective mice. Hepatology. 2010;51(5):1778–88.

    Article  CAS  PubMed  Google Scholar 

  140. Munoz-Garrido P, Marin JJG, Perugorria MJ, Urribarri AD, Erice O, Sáez E, et al. Ursodeoxycholic acid inhibits hepatic cystogenesis in experimental models of polycystic liver disease. J Hepatol. 2015;63(4):952–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Gradilone SA, Masyuk TV, Huang BQ, Banales JM, Lehmann GL, Radtke BN, et al. Activation of Trpv4 reduces the hyperproliferative phenotype of cystic cholangiocytes from an animal model of ARPKD. Gastroenterology. 2010;139(1):304–314.e2.

    Article  CAS  PubMed  Google Scholar 

  142. Urribarri AD, Munoz-Garrido P, Perugorria MJ, Erice O, Merino-Azpitarte M, Arbelaiz A, et al. Inhibition of metalloprotease hyperactivity in cystic cholangiocytes halts the development of polycystic liver diseases. Gut. 2014;63(10):1658–67.

    Article  CAS  PubMed  Google Scholar 

  143. Yoshihara D, Kurahashi H, Morita M, Kugita M, Hiki Y, Aukema HM, et al. PPAR-gamma agonist ameliorates kidney and liver disease in an orthologous rat model of human autosomal-recessive polycystic kidney disease. Am J Physiol Renal Physiol. 2011;300(2):F465–74.

    Article  CAS  PubMed  Google Scholar 

  144. Yoshihara D, Kugita M, Sasaki M, Horie S, Nakanishi K, Abe T, et al. Telmisartan ameliorates fibrocystic liver disease in an orthologous rat model of human autosomal-recessive polycystic kidney disease. PLoS One. 2013;8(12):e81480.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Fabris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lasagni, A., Morana, G., Strazzabosco, M., Fabris, L., Cadamuro, M. (2021). Congenital Cystic Lesions of the Biliary Tree. In: Floreani, A. (eds) Diseases of the Liver and Biliary Tree. Springer, Cham. https://doi.org/10.1007/978-3-030-65908-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65908-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65907-3

  • Online ISBN: 978-3-030-65908-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics