Skip to main content

Cholangiocarcinoma

  • Chapter
  • First Online:
Diseases of the Liver and Biliary Tree

Abstract

Cholangiocarcinoma (CCA) includes a group of different epithelial cancers with features of biliary tract differentiation arising from any tract of the biliary tree. Histologically, they usually are adenocarcinomas. It is a rare cancer accounting about 3% of all gastrointestinal malignancies. Based on its anatomical location, CCA is classified as intrahepatic (iCCA), perihilar (pCCA), and distal (dCCA). Currently, the three types of CCA are considered as distinct cancers since different pathogenic and management features. Cholangiocarcinomas are aggressive tumours, often diagnosed at advanced stages. Most cases are sporadic but conditions leading to chronic inflammation and cholestasis have been recognized as risk factors. Diagnosis needs a multimodal approach, mixing imaging, endoscopy, laboratory tests, including onco-biomarkers, and pathology. Surgical resection with histologically negative margins is the only curative treatment, although it is possible only for few patients; unfortunately, recurrence is frequent. Likewise, liver transplantation is an option for a small subset of selected patients suffering from pCCA. Generally, prognosis is poor for most patients. Desmoplastic nature, highly variable genetics, interaction with a rich tumour microenvironment, all contribute to the resistance of therapy. Advances in targeted-, radio- and immunotherapy will lead to improvement in survival.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Global Burden of Disease Cancer Collaboration, Fitzmaurice C, Abate D, Abbasi N, Abbastabar H, Abd-Allah F, et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2017: a systematic analysis for the global burden of disease study. JAMA Oncol. 2019;5:1749.

    Article  PubMed Central  Google Scholar 

  2. Bridgewater J, Galle PR, Khan SA, Llovet JM, Park J-W, Patel T, et al. Guidelines for the diagnosis and management of intrahepatic cholangiocarcinoma. J Hepatol. 2014;60(6):1268–89.

    Article  PubMed  Google Scholar 

  3. Razumilava N, Gores GJ. Cholangiocarcinoma. Lancet. 2014;383(9935):2168–79.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Komuta M, Govaere O, Vandecaveye V, Akiba J, Van Steenbergen W, Verslype C, et al. Histological diversity in cholangiocellular carcinoma reflects the different cholangiocyte phenotypes. Hepatology. 2012;55(6):1876–88.

    Article  CAS  PubMed  Google Scholar 

  5. DeOliveira ML, Cunningham SC, Cameron JL, Kamangar F, Winter JM, Lillemoe KD, et al. Cholangiocarcinoma: thirty-one-year experience with 564 patients at a single institution. Ann Surg. 2007;245(5):755–62.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Oliveira IS, Kilcoyne A, Everett JM, Mino-Kenudson M, Harisinghani MG, Ganesan K. Cholangiocarcinoma: classification, diagnosis, staging, imaging features, and management. Abdom Radiol (NY). 2017;42(6):1637–49.

    Article  Google Scholar 

  7. Khan AS, Dageforde LA. Cholangiocarcinoma. Surg Clin N Am. 2019;99(2):315–35.

    Article  PubMed  Google Scholar 

  8. Banales JM, Cardinale V, Carpino G, Marzioni M, Andersen JB, Invernizzi P, et al. Cholangiocarcinoma: current knowledge and future perspectives consensus statement from the European Network for the Study of Cholangiocarcinoma (ENS-CCA). Nat Rev Gastroenterol Hepatol. 2016;13(5):261–80.

    Article  PubMed  Google Scholar 

  9. Rizvi S, Khan SA, Hallemeier CL, Kelley RK, Gores GJ. Cholangiocarcinoma - evolving concepts and therapeutic strategies. Nat Rev Clin Oncol. 2018;15(2):95–111.

    Article  CAS  PubMed  Google Scholar 

  10. Khan SA, Emadossadaty S, Ladep NG, Thomas HC, Elliott P, Taylor-Robinson SD, et al. Rising trends in cholangiocarcinoma: is the ICD classification system misleading us? J Hepatol. 2012;56(4):848–54.

    Article  PubMed  Google Scholar 

  11. Tyson GL, El-Serag HB. Risk factors for cholangiocarcinoma. Hepatology. 2011;54(1):173–84.

    Article  CAS  PubMed  Google Scholar 

  12. Kaewpitoon N, Kaewpitoon S-J, Pengsaa P, Sripa B. Opisthorchis viverrini: the carcinogenic human liver fluke. World J Gastroenterol. 2008;14(5):666–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Palmer WC, Patel T. Are common factors involved in the pathogenesis of primary liver cancers? A meta-analysis of risk factors for intrahepatic cholangiocarcinoma. J Hepatol. 2012;57(1):69–76.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Chapman MH, Webster GJM, Bannoo S, Johnson GJ, Wittmann J, Pereira SP. Cholangiocarcinoma and dominant strictures in patients with primary sclerosing cholangitis: a 25-year single-centre experience. Eur J Gastroenterol Hepatol. 2012;24(9):1051–8.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Razumilava N, Gores GJ, Lindor KD. Cancer surveillance in patients with primary sclerosing cholangitis. Hepatology. 2011;54(5):1842–52.

    Article  PubMed  Google Scholar 

  16. He X-D, Wang L, Liu W, Liu Q, Qu Q, Li B-L, et al. The risk of carcinogenesis in congenital choledochal cyst patients: an analysis of 214 cases. Ann Hepatol. 2014;13(6):819–26.

    Article  PubMed  Google Scholar 

  17. Labib PL, Goodchild G, Pereira SP. Molecular pathogenesis of cholangiocarcinoma. BMC Cancer. 2019;19:185. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6394015/. Accessed 28 Jan 2020.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Welzel TM, Graubard BI, Zeuzem S, El-Serag HB, Davila JA, McGlynn KA. Metabolic syndrome increases the risk of primary liver cancer in the United States: a study in the SEER-Medicare database. Hepatology. 2011;54(2):463–71.

    Article  PubMed  Google Scholar 

  19. Lozano E, Sanchez-Vicente L, Monte MJ, Herraez E, Briz O, Banales JM, et al. Cocarcinogenic effects of intrahepatic bile acid accumulation in cholangiocarcinoma development. Mol Cancer Res. 2014;12(1):91–100.

    Article  CAS  PubMed  Google Scholar 

  20. Dill MT, Tornillo L, Fritzius T, Terracciano L, Semela D, Bettler B, et al. Constitutive Notch2 signaling induces hepatic tumors in mice. Hepatology. 2013;57(4):1607–19.

    Article  CAS  PubMed  Google Scholar 

  21. Andersen JB, Thorgeirsson SS. Genetic profiling of intrahepatic cholangiocarcinoma. Curr Opin Gastroenterol. 2012;28(3):266–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Borger DR, Tanabe KK, Fan KC, Lopez HU, Fantin VR, Straley KS, et al. Frequent mutation of isocitrate dehydrogenase (IDH)1 and IDH2 in cholangiocarcinoma identified through broad-based tumor genotyping. Oncologist. 2012;17(1):72–9.

    Article  CAS  PubMed  Google Scholar 

  23. Sia D, Hoshida Y, Villanueva A, Roayaie S, Ferrer J, Tabak B, et al. Integrative molecular analysis of intrahepatic cholangiocarcinoma reveals 2 classes that have different outcomes. Gastroenterology. 2013;144(4):829–40.

    Article  CAS  PubMed  Google Scholar 

  24. Arbelaiz A, Azkargorta M, Krawczyk M, Santos-Laso A, Lapitz A, Perugorria MJ, et al. Serum extracellular vesicles contain protein biomarkers for primary sclerosing cholangitis and cholangiocarcinoma. Hepatology. 2017;66(4):1125–43.

    Article  CAS  PubMed  Google Scholar 

  25. Takahashi K, Yan I, Wen H-J, Patel T. microRNAs in liver disease: from diagnostics to therapeutics. Clin Biochem. 2013;46(10–11):946–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cadamuro M, Nardo G, Indraccolo S, Dall’olmo L, Sambado L, Moserle L, et al. Platelet-derived growth factor-D and Rho GTPases regulate recruitment of cancer-associated fibroblasts in cholangiocarcinoma. Hepatology. 2013;58(3):1042–53.

    Article  CAS  PubMed  Google Scholar 

  27. Thelen A, Scholz A, Weichert W, Wiedenmann B, Neuhaus P, Gessner R, et al. Tumor-associated angiogenesis and lymphangiogenesis correlate with progression of intrahepatic cholangiocarcinoma. Am J Gastroenterol. 2010;105(5):1123–32.

    Article  PubMed  Google Scholar 

  28. Poruk KE, Pawlik TM, Weiss MJ. Perioperative management of hilar cholangiocarcinoma. J Gastrointest Surg. 2015;19(10):1889–99.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Mansour JC, Aloia TA, Crane CH, Heimbach JK, Nagino M, Vauthey J-N. Hilar cholangiocarcinoma: expert consensus statement. HPB (Oxford). 2015;17(8):691–9.

    Article  PubMed Central  Google Scholar 

  30. Galassi M, Iavarone M, Rossi S, Bota S, Vavassori S, Rosa L, et al. Patterns of appearance and risk of misdiagnosis of intrahepatic cholangiocarcinoma in cirrhosis at contrast enhanced ultrasound. Liver Int. 2013;33(5):771–9.

    Article  CAS  PubMed  Google Scholar 

  31. Iavarone M, Piscaglia F, Vavassori S, Galassi M, Sangiovanni A, Venerandi L, et al. Contrast enhanced CT-scan to diagnose intrahepatic cholangiocarcinoma in patients with cirrhosis. J Hepatol. 2013;58(6):1188–93.

    Article  PubMed  Google Scholar 

  32. Rimola J, Forner A, Reig M, Vilana R, de Lope CR, Ayuso C, et al. Cholangiocarcinoma in cirrhosis: absence of contrast washout in delayed phases by magnetic resonance imaging avoids misdiagnosis of hepatocellular carcinoma. Hepatology. 2009;50(3):791–8.

    Article  PubMed  Google Scholar 

  33. Wannhoff A, Gotthardt DN. Recent developments in the research on biomarkers of cholangiocarcinoma in primary sclerosing cholangitis. Clin Res Hepatol Gastroenterol. 2019;43(3):236–43.

    Article  CAS  PubMed  Google Scholar 

  34. Kato A, Naitoh I, Miyabe K, Hayashi K, Kondo H, Yoshida M, et al. Differential diagnosis of cholangiocarcinoma and IgG4-related sclerosing cholangitis by fluorescence in situ hybridization using transpapillary forceps biopsy specimens. J Hepatobili Pancreat Sci. 2018;25(3):188–94.

    Article  Google Scholar 

  35. Kamisawa T, Nakazawa T, Tazuma S, Zen Y, Tanaka A, Ohara H, et al. Clinical practice guidelines for IgG4-related sclerosing cholangitis. J Hepatobili Pancreat Sci. 2019;26(1):9–42.

    Article  Google Scholar 

  36. Ruys AT, van Beem BE, Engelbrecht MRW, Bipat S, Stoker J, Van Gulik TM. Radiological staging in patients with hilar cholangiocarcinoma: a systematic review and meta-analysis. Br J Radiol. 2012;85(1017):1255–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tamada K, Ushio J, Sugano K. Endoscopic diagnosis of extrahepatic bile duct carcinoma: advances and current limitations. World J Clin Oncol. 2011;2(5):203–16.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Meining A, Chen YK, Pleskow D, Stevens P, Shah RJ, Chuttani R, et al. Direct visualization of indeterminate pancreaticobiliary strictures with probe-based confocal laser endomicroscopy: a multicenter experience. Gastrointest Endosc. 2011;74(5):961–8.

    Article  PubMed  Google Scholar 

  39. Heimbach JK, Sanchez W, Rosen CB, Gores GJ. Trans-peritoneal fine needle aspiration biopsy of hilar cholangiocarcinoma is associated with disease dissemination. HPB (Oxford). 2011;13(5):356–60.

    Article  Google Scholar 

  40. Gonda TA, Viterbo D, Gausman V, Kipp C, Sethi A, Poneros JM, et al. Mutation profile and fluorescence in situ hybridization analyses increase detection of malignancies in biliary strictures. Clin Gastroenterol Hepatol. 2017;15(6):913–919.e1.

    Article  CAS  PubMed  Google Scholar 

  41. Gonda TA, Glick MP, Sethi A, Poneros JM, Palmas W, Iqbal S, et al. Polysomy and p16 deletion by fluorescence in situ hybridization in the diagnosis of indeterminate biliary strictures. Gastrointest Endosc. 2012;75(1):74–9.

    Article  PubMed  Google Scholar 

  42. Barr Fritcher EG, Kipp BR, Voss JS, Clayton AC, Lindor KD, Halling KC, et al. Primary sclerosing cholangitis patients with serial polysomy fluorescence in situ hybridization results are at increased risk of cholangiocarcinoma. Am J Gastroenterol. 2011;106(11):2023–8.

    Article  PubMed  Google Scholar 

  43. Dudley JC, Zheng Z, McDonald T, Le LP, Dias-Santagata D, Borger D, et al. Next-generation sequencing and fluorescence in situ hybridization have comparable performance characteristics in the analysis of pancreaticobiliary brushings for malignancy. J Mol Diagn. 2016;18(1):124–30.

    Article  CAS  PubMed  Google Scholar 

  44. Severino V, Dumonceau J-M, Delhaye M, Moll S, Annessi-Ramseyer I, Robin X, et al. Extracellular vesicles in bile as markers of malignant biliary stenoses. Gastroenterology. 2017;153(2):495–504.e8.

    Article  PubMed  Google Scholar 

  45. Wan JCM, Massie C, Garcia-Corbacho J, Mouliere F, Brenton JD, Caldas C, et al. Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nat Rev Cancer. 2017;17(4):223–38.

    Article  CAS  PubMed  Google Scholar 

  46. Yang JD, Yab TC, Taylor WR, Foote PH, Ali HA, Lavu S, et al. Detection of cholangiocarcinoma by assay of methylated DNA markers in plasma. Gastroenterology. 2017;152(5):S1041–2.

    Article  Google Scholar 

  47. Edge SB, American Joint Committee on Cancer, editors. AJCC cancer staging manual. 7th ed. New York, NY: Springer; 2010. 648 p.

    Google Scholar 

  48. Amin MB, Edge S, Greene F, Byrd DR, Brookland RK, Washington MK, et al., editors. AJCC cancer staging manual. 8th ed. Cham: Springer International Publishing; 2017. https://www.springer.com/gp/book/9783319406176. Accessed 27 Feb 2020.

    Google Scholar 

  49. Chun YS, Pawlik TM, Vauthey J-N. 8th Edition of the AJCC Cancer staging manual: pancreas and hepatobiliary cancers. Ann Surg Oncol. 2018;25(4):845–7.

    Article  PubMed  Google Scholar 

  50. Bird N, Elmasry M, Jones R, Elniel M, Kelly M, Palmer D, et al. Role of staging laparoscopy in the stratification of patients with perihilar cholangiocarcinoma. Br J Surg. 2017;104(4):418–25.

    Article  CAS  PubMed  Google Scholar 

  51. Ribero D, Pinna AD, Guglielmi A, Ponti A, Nuzzo G, Giulini SM, et al. Surgical approach for long-term survival of patients with intrahepatic cholangiocarcinoma: a multi-institutional analysis of 434 patients. Arch Surg. 2012;147(12):1107–13.

    Article  PubMed  Google Scholar 

  52. Sapisochin G, Fidelman N, Roberts JP, Yao FY. Mixed hepatocellular cholangiocarcinoma and intrahepatic cholangiocarcinoma in patients undergoing transplantation for hepatocellular carcinoma. Liver Transpl. 2011;17(8):934–42.

    Article  PubMed  Google Scholar 

  53. Goldaracena N, Gorgen A, Sapisochin G. Current status of liver transplantation for cholangiocarcinoma. Liver Transpl. 2018;24(2):294–303.

    Article  PubMed  Google Scholar 

  54. Lunsford KE, Javle M, Heyne K, Shroff RT, Abdel-Wahab R, Gupta N, et al. Liver transplantation for locally advanced intrahepatic cholangiocarcinoma treated with neoadjuvant therapy: a prospective case-series. Lancet Gastroenterol Hepatol. 2018;3(5):337–48.

    Article  PubMed  Google Scholar 

  55. Kolarich AR, Shah JL, George TJ, Hughes SJ, Shaw CM, Geller BS, et al. Non-surgical management of patients with intrahepatic cholangiocarcinoma in the United States, 2004-2015: an NCDB analysis. J Gastrointest Oncol. 2018;9(3):536–45.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Shao F, Qi W, Meng FT, Qiu L, Huang Q. Role of palliative radiotherapy in unresectable intrahepatic cholangiocarcinoma: population-based analysis with propensity score matching. Cancer Manag Res. 2018;10:1497–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hong TS, Wo JY, Yeap BY, Ben-Josef E, McDonnell EI, Blaszkowsky LS, et al. Multi-institutional phase II study of high-dose hypofractionated proton beam therapy in patients with localized, unresectable hepatocellular carcinoma and intrahepatic cholangiocarcinoma. J Clin Oncol. 2016;34(5):460–8.

    Article  CAS  PubMed  Google Scholar 

  58. Kiefer MV, Albert M, McNally M, Robertson M, Sun W, Fraker D, et al. Chemoembolization of intrahepatic cholangiocarcinoma with cisplatinum, doxorubicin, mitomycin C, ethiodol, and polyvinyl alcohol: a 2-center study. Cancer. 2011;117(7):1498–505.

    Article  CAS  PubMed  Google Scholar 

  59. Kuhlmann JB, Euringer W, Spangenberg HC, Breidert M, Blum HE, Harder J, et al. Treatment of unresectable cholangiocarcinoma: conventional transarterial chemoembolization compared with drug eluting bead-transarterial chemoembolization and systemic chemotherapy. Eur J Gastroenterol Hepatol. 2012;24(4):437–43.

    CAS  PubMed  Google Scholar 

  60. Kim JH, Won HJ, Shin YM, Kim K-A, Kim PN. Radiofrequency ablation for the treatment of primary intrahepatic cholangiocarcinoma. AJR Am J Roentgenol. 2011;196(2):W205–9.

    Article  PubMed  Google Scholar 

  61. Valle J, Wasan H, Palmer DH, Cunningham D, Anthoney A, Maraveyas A, et al. Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer. N Engl J Med. 2010;362(14):1273–81.

    Article  CAS  PubMed  Google Scholar 

  62. Hong YK, Choi SB, Lee KH, Park SW, Park YN, Choi JS, et al. The efficacy of portal vein embolization prior to right extended hemihepatectomy for hilar cholangiocellular carcinoma: a retrospective cohort study. Eur J Surg Oncol. 2011;37(3):237–44.

    Article  CAS  PubMed  Google Scholar 

  63. Khan AS, Garcia-Aroz S, Ansari MA, Atiq SM, Senter-Zapata M, Fowler K, et al. Assessment and optimization of liver volume before major hepatic resection: current guidelines and a narrative review. Int J Surg. 2018;52:74–81.

    Article  PubMed  Google Scholar 

  64. Gazzaniga GM, Cappato S, Belli FE, Bagarolo C, Filauro M. Assessment of hepatic reserve for the indication of hepatic resection: how I do it. J Hepato-Biliary-Pancreat Surg. 2005;12(1):27–30.

    Article  Google Scholar 

  65. Nuzzo G, Giuliante F, Ardito F, Giovannini I, Aldrighetti L, Belli G, et al. Improvement in perioperative and long-term outcome after surgical treatment of hilar cholangiocarcinoma: results of an Italian multicenter analysis of 440 patients. Arch Surg. 2012;147(1):26–34.

    Article  PubMed  Google Scholar 

  66. Laurent A, Tayar C, Cherqui D. Cholangiocarcinoma: preoperative biliary drainage (Con). HPB (Oxford). 2008;10(2):126–9.

    Article  CAS  Google Scholar 

  67. Kullman E, Frozanpor F, Söderlund C, Linder S, Sandström P, Lindhoff-Larsson A, et al. Covered versus uncovered self-expandable nitinol stents in the palliative treatment of malignant distal biliary obstruction: results from a randomized, multicenter study. Gastrointest Endosc. 2010;72(5):915–23.

    Article  PubMed  Google Scholar 

  68. Kim TH, Han S-S, Park S-J, Lee WJ, Woo SM, Moon SH, et al. Role of adjuvant chemoradiotherapy for resected extrahepatic biliary tract cancer. Int J Radiat Oncol Biol Phys. 2011;81(5):e853–9.

    Article  PubMed  Google Scholar 

  69. Heimbach JK, Haddock MG, Alberts SR, Nyberg SL, Ishitani MB, Rosen CB, et al. Transplantation for hilar cholangiocarcinoma. Liver Transpl. 2004;10(10 Suppl 2):S65–8.

    Article  PubMed  Google Scholar 

  70. Gores GJ, Darwish Murad S, Heimbach JK, Rosen CB. Liver transplantation for perihilar cholangiocarcinoma. Dig Dis. 2013;31(1):126–9.

    Article  PubMed  Google Scholar 

  71. Zamora-Valdes D, Heimbach JK. Liver transplant for cholangiocarcinoma. Gastroenterol Clin N Am. 2018;47(2):267–80.

    Article  Google Scholar 

  72. Darwish Murad S, Kim WR, Harnois DM, Douglas DD, Burton J, Kulik LM, et al. Efficacy of neoadjuvant chemoradiation, followed by liver transplantation, for perihilar cholangiocarcinoma at 12 US centers. Gastroenterology. 2012;143(1):88–98.e3; quiz e14.

    Article  PubMed  Google Scholar 

  73. Sangchan A, Kongkasame W, Pugkhem A, Jenwitheesuk K, Mairiang P. Efficacy of metal and plastic stents in unresectable complex hilar cholangiocarcinoma: a randomized controlled trial. Gastrointest Endosc. 2012;76(1):93–9.

    Article  PubMed  Google Scholar 

  74. Wadsworth CA, Westaby D, Khan SA. Endoscopic radiofrequency ablation for cholangiocarcinoma. Curr Opin Gastroenterol. 2013;29(3):305–11.

    Article  PubMed  Google Scholar 

  75. Valle JW, Furuse J, Jitlal M, Beare S, Mizuno N, Wasan H, et al. Cisplatin and gemcitabine for advanced biliary tract cancer: a meta-analysis of two randomised trials. Ann Oncol. 2014;25(2):391–8.

    Article  CAS  PubMed  Google Scholar 

  76. Chua TC, Saxena A. Extended pancreaticoduodenectomy with vascular resection for pancreatic cancer: a systematic review. J Gastrointest Surg. 2010;14(9):1442–52.

    Article  PubMed  Google Scholar 

  77. Dickson PV, Behrman SW. Distal cholangiocarcinoma. Surg Clin North Am. 2014;94(2):325–42.

    Article  PubMed  Google Scholar 

  78. Kwon HJ, Kim SG, Chun JM, Lee WK, Hwang YJ. Prognostic factors in patients with middle and distal bile duct cancers. World J Gastroenterol. 2014;20(21):6658–65.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Acquaviva J, He S, Zhang C, Jimenez J-P, Nagai M, Sang J, et al. FGFR3 translocations in bladder cancer: differential sensitivity to HSP90 inhibition based on drug metabolism. Mol Cancer Res. 2014;12(7):1042–54.

    Article  CAS  PubMed  Google Scholar 

  80. Rohle D, Popovici-Muller J, Palaskas N, Turcan S, Grommes C, Campos C, et al. An inhibitor of mutant IDH1 delays growth and promotes differentiation of glioma cells. Science. 2013;340(6132):626–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Sirica AE. The role of cancer-associated myofibroblasts in intrahepatic cholangiocarcinoma. Nat Rev Gastroenterol Hepatol. 2011;9(1):44–54.

    Article  PubMed  CAS  Google Scholar 

  82. Mertens JC, Fingas CD, Christensen JD, Smoot RL, Bronk SF, Werneburg NW, et al. Therapeutic effects of deleting cancer-associated fibroblasts in cholangiocarcinoma. Cancer Res. 2013;73(2):897–907.

    Article  CAS  PubMed  Google Scholar 

  83. Martin-Liberal J, Ochoa de Olza M, Hierro C, Gros A, Rodon J, Tabernero J. The expanding role of immunotherapy. Cancer Treat Rev. 2017;54:74–86.

    Article  CAS  PubMed  Google Scholar 

  84. Feldman SA, Assadipour Y, Kriley I, Goff SL, Rosenberg SA. Adoptive cell therapy--tumor-infiltrating lymphocytes, t-cell receptors, and chimeric antigen receptors. Semin Oncol. 2015;42(4):626–39.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Fabris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lasagni, A., Strazzabosco, M., Guido, M., Fabris, L., Cadamuro, M. (2021). Cholangiocarcinoma. In: Floreani, A. (eds) Diseases of the Liver and Biliary Tree. Springer, Cham. https://doi.org/10.1007/978-3-030-65908-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65908-0_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65907-3

  • Online ISBN: 978-3-030-65908-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics