Skip to main content

Historical Evolution of the Use of Minerals in Human Health

  • Chapter
  • First Online:
Minerals latu sensu and Human Health

Abstract

The historical evolution of the use of minerals by humans for cosmetic and therapeutic purposes is most probably as old as the human species itself, naturally first applied on an empirical basis, and later moved to a scientific basis initiated with the dawn of scientific revolution, in the Renaissance. Such evolution is classified in this monograph into three periods: the classical antiquity involving ancient civilizations, Mesopotamian, Chinese, Egyptian, Greek, and Roman; the Middle Ages and Renaissance; and the modern and contemporaneous ages. In these periods, the interest for certain minerals as healing natural materials is reported and discussed. The “medicinal terras” of the Greek volcanic islands Lemnos, Chios, Samos, Milos, and Kimolos were particularly famed, as was the case of the “Lemnian terra,” which became known as “terra sigillata” or “terra sealed” supposed to possess supernatural healing properties. On the other hand, certain arsenic-, lead-, and mercury-bearing minerals were soon identified by their poison and lethal properties. From the Renaissance onwards, the First and Second Scientific Revolutions and their particular outcomes in pharmacy and medicine have provided the explanations and justifications for both benefits and risks of minerals/human health interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agricola G (1950) De Re Metallica (1556), translated by Hoover H and Hoover LH. Dover Publications, New York

    Google Scholar 

  • Alphandéry E (2014) Applications of magnetosomes synthesized by magnetotactic bacteria in medicine. Front Bioeng Biotechnol. https://doi.org/10.3389/fbioe.2014.00005

  • Arias CA, Murray BE (2009) Antibiotic-resistant bugs in the 21st century: a clinical super-challenge. New Engl J Med 360:439–443

    Article  Google Scholar 

  • Awad ME, López-Galindo A, Setti M, El-Rahmany MM, Viseras C (2017) Kaolinite in pharmaceutics and biomedicine. Int J Pharm 533:34–48

    Article  Google Scholar 

  • Aziz N, Gilani AH, Rindh MA (2002) Kushta (s): unique herbo-mineral preparation used in South Asian traditional medicine. MedHypotheses 59(4):468–472

    Article  Google Scholar 

  • Barroso MS (2013) Bezoar stones, magic, science and art. In: Duffin CJ, RTJ M, Gardner-Thorpe C (eds) A history of geology and medicine. Geological Society, London. Special Publication n° 375, 193–207

    Google Scholar 

  • Bech J (1987) Les terres medicinales.. Discurso de Ingreso como membro numerário en la Real Académia de Farmacia de Barcelona

    Google Scholar 

  • Bech J (1994) Contribuición al estudio de las arcillas de uso medicinal a lo largo de la história. Tesis doctoral en Farmacia, Facultad de Farmacia, Univ. Barcelona, 3 vol., I- 420pp, II-341pp; III – 299pp

    Google Scholar 

  • Bech J (1996) Aspectos históricos y técnicos de las arcillas de uso medicinal. IX Simposio del Grupo Especializado de Cristalografia, Real Sociedad Española de Fisica y Quimica, Univ. Granada

    Google Scholar 

  • Bech J (2010) Terra Lemnia: dades, dubtes i pelegrins, Discurso de Ingreso como académico numerário de la Real Académia de Medicina de Catalunya, 100pp

    Google Scholar 

  • Bech J (2014) Algunas precisiones sobre la legendaria Terra Lemnia. Lição para obtenção do título de Doutor Honoris Causa pela Universidad Miguel Hernandéz, Elche, España

    Google Scholar 

  • Beer S, Saely CH, Hoefle G, Rein P, Vonbank A, Breuss J, Gaensbacher B, Muendlein A, Drexel H (2010) Low bone mineral density is not associated with angiographically determined coronary atherosclerosis in men. Osteoporos Int 21:1695–1701

    Article  Google Scholar 

  • Belon P (1553) Voyage au Levant: Les observations de Pierre Belon du Mans de plusieurs singularities & choses mémorables trouvées en Grèce, Turquie, Judée, Egypte, Arabe & autres pays étrangers. Alexandra Merle (ed), Paris, Chandeigne, 2001, 109pp

    Google Scholar 

  • Beniash E (2011) Biominerals-hierarchical nanocomposites: the example of bone. Rev Nanomed Nanobiotechnol 3(1):47–69. RP (1975)

    Article  Google Scholar 

  • Blakemore RP (1975) Magnetotactic bacteria. Science 190(4212):377–379

    Article  Google Scholar 

  • Bunnell JE, Finkelman RB, Centeno JA, Selinus O (2007) Medical geology: a globally emerging discipline. Geol Acta 5(3):273–281

    Google Scholar 

  • Buseck PR, Jacob DJ, Pósfai M, Li J, Anderson JR (2000) Minerals in the air: an environmental perspective. Int Geol Rev 42:577–593

    Article  Google Scholar 

  • Carbajo JM, Maraver F (2017) Sulphurous mineral waters: new applications for health. Evid Based Complement Alternat Med 2017:8034084

    Article  Google Scholar 

  • Carbajo JM, Maraver F (2018) Salt water and skin interactions: new lines of evidence. Int J Biometeorol 62(8):1345–1360

    Article  Google Scholar 

  • Cardoso A (2017a) Hipócrates: “O Pai da Medicina”. Medicina//Primórdios, Visão- História, n°40, 10–15

    Google Scholar 

  • Cardoso A (2017b) Sífilis, o mal francês. Medicina//Primórdios, Visão- História, n°40, 34–37

    Google Scholar 

  • Carretero MI, Pozo M (2007) Mineralogía aplicada: salud y medio ambiente. Thomson, Madrid, 464pp

    Google Scholar 

  • Carretero MI, Pozo M (2009) Clay and non-clay minerals in the pharmaceutical industry, Part I: Excipients and medical applications. Appl Clay Sci 46:73–80

    Article  Google Scholar 

  • Carretero MI, Pozo M (2010) Clay and non-clay minerals in the pharmaceutical and cosmetic industries, Part II: Active ingredients. Appl Clay Sci 47:171–181

    Article  Google Scholar 

  • Centeno JA, Finlelman RB, Selinus O (2016) Medical geology: impacts of the natural environment on public health. Geosciences 6(1):8. https://doi.org/10.3390/geoscinces6010008

    Article  Google Scholar 

  • Chain Y, Illanes L (2015) Radiofármacos en medicina nuclear: Fundamentos y Aplicación Clínica. Facultad de Ciencias Exactas, Edulp (Editorial de la Universidad de la Plata, Libros de Cátedra, 188pp

    Book  Google Scholar 

  • Combes C, Cazalbon S, Rey C (2016) Apatite Biominerals Minerals 6(2):34. https://doi.org/10.3390/min6020034

    Article  Google Scholar 

  • Cottignoli V, Cavarretta E, Salvador L, Valfré C, Maras A (2015a) Morphological and chemical study of pathological deposits in human aortic and mitral valve stenosis: a biomineralogical contribution. Pathol Res Int 15, 342984, 14pp

    Google Scholar 

  • Cottignoli V, Cavarretta E, Salvador L, Valfré C, Maras A (2015b) Biological niches within human calcified aortic valves: towards understanding of the pathological biomineralization process. Hindawi Publishing Corporation BioMed Research International Volume 2015

    Google Scholar 

  • Cross W (1919) Geology of the world war and after. Geol Soc Am Bull 30:165–188

    Article  Google Scholar 

  • Davenhall B (2012) Geomedicine: geography and personal health. ESRI, Redlands. https://www.esri.com/library/ebooks/geomedicine.pdf

    Google Scholar 

  • Davies BE, Bowman C, Davies TC, Selinus O (2005) Medical geology: perspectives and prospects. In: Selinus O, Alloway B, Centeno JA, Finkelman RB, Fuge R, Lindh U, Smedley P (eds) Essentials of medical geology: impacts of the natural environment on public health. Elsevier, Academic Press, pp 1–14

    Google Scholar 

  • Demichelis R, Schuitemaker A, Garcia NA, Koziara K, De La Pierre M, Raiteri P, Gale JD (2018) Simulation of crystallization of biominerals. Annu Rev Mater Res 48:327–352

    Article  Google Scholar 

  • Dharmananda S (2012) Tibetan herbal medicine. https://www.itmonline.org/arts/tibherbs.htm

  • Diekema DJ, BootsMiller BJ, Vaughn TE, Woolson RF, Yankey JW (2004) Antimicrobial resistance trends and outbreak frequency in United States hospitals. Clin Inf Dis 38:78–85

    Article  Google Scholar 

  • Dong H, Lu A (2012) Mineral-microbe interactions and implications for remediation. Elements 8:95–100

    Article  Google Scholar 

  • Dove PM (2010) The rise of skeletal biominerals. Elements 6(1):37–42

    Article  Google Scholar 

  • Duffin CJ (2013) Lithotherapeutical research sources from antiquity to the mid-eighteenth century. In: History of geology and medicine. Geological Society Special Publication, London, pp 7, 375p–43

    Google Scholar 

  • Duffin CJ, Moody RTJ, Gardner-Thorpe C (2013) A history of geology and medicine. In: Duffin CJ, RTJ M, Gardner-Thorpe C (eds) . Geological Society, London. Special Publication n° 375

    Google Scholar 

  • Edmonds M, Grattan J, Michnowicz S (2018) Volcanic gases: silent killers. Adv Volcanol:65–83

    Google Scholar 

  • Elliot JC (2002) Calcium phosphate biominerals. Rev Mineral Geochem 48(1):427–453

    Article  Google Scholar 

  • Endo K, Kogure T, Nagasawa H (2018) Biomineralization: from molecular and nano-structural analyses to environmental science. Springer, Singapore. ISBN:978-981-13-1001-0

    Book  Google Scholar 

  • Finkelman RB (2019) The influence of clays on human health: a medical geology perspective. Clays Clay Miner 58(2). Journal of Clay Minerals Society, ISSN:0009-8604. https://doi.org/10.1007/s42860-018-0001-9

  • Foster HD (2002) The geography of disease family trees: The case of selenium. In: Bobrowsky P, Balkema AA (eds) Geoenvironmental mapping: methods, theory and practice, pp 497–529

    Google Scholar 

  • Garret RG (2000) Natural sources of metals in the environment. Hum Ecol Risk Assess 6(6):954–963

    Google Scholar 

  • Gbadebo AM, Bankole OD (2007) Analysis of potentially toxic metals in airborne cement dust around Sagamu, Southwestern Nigeria. J Appl Sci 7:35–40. https://doi.org/10.3923/jas.2007.35.40

    Article  Google Scholar 

  • Gieré R, Vaughan DJ (2013) Minerals in the air. Mineral Matters Elem:410–411

    Google Scholar 

  • Glick JB, Kaur RR, Siegel D (2013) Achieving hemostasis in dermatology – Part II: Topical hemostatic agents. Indian Dermatol Online J 4(3):172–176

    Article  Google Scholar 

  • Gomes CSF (2018) Healing and edible clays: a review of basic concepts, benefits and risks. Environ Geochem Health 40:1739–1765, Springer. https://doi.org/10.1007/s10653-016-9903-4

    Article  Google Scholar 

  • Gomes CSF, Silva JBP (2007) Minerals and clay minerals in medical geology. Appl Clay Sci 36:4–21

    Article  Google Scholar 

  • Gomes CSF, Carretero MI, Pozo M, Maraver F, Cantista P, Armijo F, Legido JL, Teixeira F, Rautureau M, Delgado R (2013) Peloids and pelotherapy: historical evolution, classification and glossary. Appl Clay Sci 75–76:28–38

    Article  Google Scholar 

  • Gomes CSF, Silva JBP, Viegas Fernandes J, Viegas Fernandes FM (2019) Thalassotherapy in Porto Santo Island of the Madeira Archipelago: Facts and Prospects. Bol Soc Esp Hidrol Méd 34(1):9–33. ISSN:0214-2813. https://doi.org/10.23853/bsehm.2019.0953

    Article  Google Scholar 

  • Gomes CSF, Gomes JH, Silva EF (2020) Bacteriostatic and bactericidal clays: an overview. Environ Geochem Health, Published online 30 June 2020, 21pp, Springer. https://doi.org/10.1007/s10653-020-00628-w

  • Hajsadeghi S, Khamseh M-E, Larijani B, Abedin B, Vakili-Zarch A, Meysamie A-P, Yazdanpanah F (2011) Bone mineral density and coronary atherosclerosis. J Saudi Heart Assoc 23:143–146

    Article  Google Scholar 

  • Hall AJ, Photos-Jones E (2008) Assessing past beliefs and practices: the case of Lemnian Earth. Archeometry 50:1032–1049

    Article  Google Scholar 

  • Hasan SE, Finkelman RB, Skinner HCW (2013) Geology and health: a brief history from the Pleistocene to today. The Geological Society of America Special Paper 501

    Google Scholar 

  • IARC (1987) Silica and some silicates. Monographs 42

    Google Scholar 

  • Lev E (2010) Healing with minerals and inorganic substances: a review of Levantine practice from the Middle Ages to the present. Int Geol Rev 52(7–8):700–725. https://doi.org/10.1080/00206811003679661

    Article  Google Scholar 

  • Limpitlaw UG (2004) The medical use of minerals, rocks and fossils. In: Proceedings of the Geological Society of America, Annual Meeting Abstract 48–5, 36(5):130

    Google Scholar 

  • Limpitlaw U (2010) Ingestion of earth materials for health by humans and animals. Int Geol Rev 52(7–8):726–744. https://doi.org/10.1080/00206811003679695

    Article  Google Scholar 

  • López-Galindo A, Viseras C (2004) Pharmaceutical and cosmetic applications of clays. In: Wypych F, Satyanarayana KG (eds) Clay surfaces: fundamentals and applications. Elsevier Ltd, pp 267–289

    Google Scholar 

  • López-Galindo A, Viseras C, Aguzzi C, Cerezo P (2011) Pharmaceutical and cosmetic uses of fibrous clays. Dev Clay Sci 3, Elsevier B.V. https://doi.org/10.1016/B978-0-444-53607-5.00013-X

  • Lӓg J (1990) General survey of geomedicine. In: Lӓg J (ed) Geomedicine. CRC Press, Boca Raton, pp 1–24

    Google Scholar 

  • Maraver F (2017) Investigación actual en peloterapia. Libro de Resúmenes del V Congreso Iberoamericano de Peloides, Balneario El Raposo, Badajoz, España, pp 33–35

    Google Scholar 

  • Martin R, Dowling K, Pearce D, Sillitoe J, Florentine S (2014) Health effects associated with inhalation of airborne arsenic arising from mining operations. Geosciences 4:128–175. https://doi.org/10.3390/geosciences4030128

    Article  Google Scholar 

  • Martindale (1982) The extra pharmacopoeia. In: Reynolds JEF (ed) , 28th edn. The Pharmaceutical Press, London, pp 606–607: 938

    Google Scholar 

  • Miller CF, Wark DA (2008) Supervolcanoes and their supereruptions. Elements 4:11–16

    Article  Google Scholar 

  • Morer C (2016) Talasoterapia. Bol Soc Esp Hidrologia Médica 31:119–146

    Article  Google Scholar 

  • Morrison KD, Misra R, Williams LB (2016) Unearthing the antibacterial mechanism of medicinal clay: a geochemical approach to combating antibiotic resistance. Sci Rep 6:19043. https://doi.org/10.1038/Srep19043

    Article  Google Scholar 

  • Novelli G (1996) Applicazion medicali e Igieniche delle bentoniti. In: Veniale F (ed) Atti Conv. “Argille Curative”. Gruppo Italiano AIPEA, Salice Terme (PV), Tipografia Trabella, Milano

    Google Scholar 

  • Novelli G (1998) Applicazioni Cosmetiche e Medicaliu delle argille smectiche. Cosmet News 122:350–357

    Google Scholar 

  • Novelli G (2000) Bentonite: A clay over the centuries. Incontri Scentifici, V Corso di Formazione “Metodi di Analisi di Materiali Argillosi”. Gruppo Itaiano AIPEA, pp 263–304

    Google Scholar 

  • Nutton V (2004) Ancient medicine. Routledge, Oxon

    Book  Google Scholar 

  • Oliveira RP (2011) Para o Estudo da Saúde Conventual no Ínicio do Século XIX: As Boticas. Asclepio. Revista de História de la Medicina y de la Ciencia, v. LXIII, n°1, enero-junio, 123–154, ISSN:0210-4466

    Google Scholar 

  • Oliveira R, Santos D, Ferreira D, Coelho P, Veiga F (2006) Preparações radiofarmacêuticas e suas aplicações. RBCF (Revista Brasileira de Ciências Farmacêuticas) 42(2):151–165

    Article  Google Scholar 

  • Orchardson R, Gillam DG (2000) The efficacy of potassium salts as agents for treating dentin hypersensitivity. J Orofac Pain 14(1):9–19

    Google Scholar 

  • Otto CC, Haydel SE (2013) Exchangeable ions are responsible for the in vitro antibacterial properties of natural clay mixtures. PLos One 8(5):1–9

    Article  Google Scholar 

  • Photos-Jones E, Hall AJ (2011) Lemnian earth and the earths of the Agean: an archeological guide to medicines, pigments and washing powders. Potinguir Press, Glasgow

    Google Scholar 

  • Photos-Jones E, Christidis GE, Piochi M, Keanee C, Mormone A, Balassone G, Perdikatsis V, Leanord A (2016) Testing Greco-Roman medicinal minerals: The case of solfataric alum. J Archaeol Sci Rep 10:82–95

    Google Scholar 

  • Photos-Jones E, Edwards C, Haner F, Lawton L, Keane C, Leanord A, Perdikatsis V (2017) Archaeological medicinal earths as antibacterial agents: the case of the Basel Lemnian sphragides. In: Duffin CJ, Gardner-Thorpe C, Moody RTJ (eds) Geology and medicine: historical connections. Geological Society, London, Special Publications 452. https://doi.org/10.1144/SP452.6

    Chapter  Google Scholar 

  • Pierre-Louis B, Aronow WS, Yoon JH, Ahn C, Deluca AJ (2009) Relation of bone mineral density to stress test-induced myocardial ischemia. Am J Cardiol 104(2):199–201

    Article  Google Scholar 

  • Pita JR (1999) Um Livro com 200 anos: A Farmacopeia Portuguesa (edição oficial): A publicação da primeira farmacopeia oficial: Pharmacopeia Geral (1794). Revista de História de Ideias 20:47–100

    Article  Google Scholar 

  • Pita JR, Pereira AL (2012) A arte farmacêutica no século XVIII, a farmácia conventual e o inventário da Botica do Convento de Nossa senhora do Carmo (Aveiro)/Pharmaceutical Art in the 18th century, Conventual Pharmacy and the Inventory of the Apothecary of the Convento of Nossa Senhora do Carmo (Aveiro). Ágora, Estudos Clássicos em Debate 14(1):227–268. ISSN:0874-5498

    Google Scholar 

  • Posfai M, Molnar A (2000) Aerosol particles in the troposphere: a mineralogical introduction, in EMU Notes in Mineralogy 2, Enviromental Mineralogy, chapter 10, eds. Vaughan DJ, Wogelius RA, Eotvos University Press, Budapest

    Google Scholar 

  • Prospero JM (2001) African dust in America. Geotimes 46(1):24–27

    Google Scholar 

  • Rautureau M, Liewig N, Gomes CSF, Katouzian-Safadi M (2010) Argiles et Santé: Propriétés et Thérapies. Editions Médicales Internationales, Lavoisier, 184 pp, ISBN:978-2-7430-1202-1

    Google Scholar 

  • Rautureau M, Gomes CSF, Liewig N, Safadi MK (2017) Clays and health: properties and therapeutic uses. Springer, Cham. ISBN:978-3-319-42883-3

    Book  Google Scholar 

  • Retsas S (2012) Medicinal use of earths and minerals from Hippocrates to Sir Hans Sloan and beyond. Vesalis, XVIII, 93–98

    Google Scholar 

  • Retsas S (2016) Geotherapeutics: the medicinal use of earths, minerals and metals from Antiquity to the twenty-first century. Geological Society, London, Special Paper, v.452. https://doi.org/10.1144/SP452.5

    Book  Google Scholar 

  • Rosborg I (ed) (2015) Drinking water, minerals and mineral balance: importance, health significance, safety precautions. Springer, Cham, 140pp

    Google Scholar 

  • Ruiz-Hitzky E, Darder M, Alcântara A, Wicklein B, Aranda P (2015) Recent advances on fibrous clay-based Nanocomposites. Adv Polym Sci 267:39–86

    Article  Google Scholar 

  • Sánchez IP (2001) Radiofármacos PET. Ver Esp Med Nuclear 20:477–498

    Article  Google Scholar 

  • Satish S, Tharmavaram M, Rawtani D (2019) Halloysite nanotubes as a nature’s boon for biomedical applications. Nanomedicine 6:1–16

    Google Scholar 

  • Selinus O, Alloway B, Centeno J, Finkelman R, Fuge R, Lindh U, Smedley P (eds) (2005) Essentials of medical geology: impacts of the natural environment on public health. Elsevier Academic Press, 812p

    Google Scholar 

  • Selinus O, Finkelman R, Centeno J (2010) Medical geology: a regional synthesis. Springer, 392pp. ISBN:978-90-481-3429-8. https://doi.org/10.1007/978-90-481-3430-4

  • Skinner HCW (2000) Minerals and human health. In: Vaughan J, Wogelius RA (eds) EMU notes in mineralogy 2, environmental mineralogy. Eotvos University Press, Budapest, pp 383–412

    Google Scholar 

  • Skinner HCW (2005a) Biominerals. Mineral Mag 69(5):621–641

    Article  Google Scholar 

  • Skinner HCW (2005b) Mineralogy of bone. In: Essentials of medical geology: impacts of the natural environment on public health. Elsevier/Academic Press, New York, pp 607–693

    Google Scholar 

  • Spalek K, Spielvogel I (2019) The use of medicinal clay from Silesia “Terra Sigillata Silesiaca”, Central Europe – a new change for natural medicine? Biomed J Sci Tech Res 20(3):BJSTR. MS.ID.003457. https://doi.org/10.26717/BJSTR.2019.20.003457

    Article  Google Scholar 

  • Sun J, Li Y, Liang X-J, Wang PC (2011) Bacterial magnetosome: a novel biogenetic magnetic targeted drug carrier with potential multifunctions. J Nanomater 2011:469031, 13 p. https://doi.org/10.1155/2011/469031

    Article  Google Scholar 

  • Teixeira F (2009) Água, fonte da vida. In: Comissão de Coordenação e Desenvolvimento da Região Centro (ed) À Beira da Água, pp 109–139. ISBN:978-972-569-160-1

    Google Scholar 

  • Teixeira F (2010) La utilización de las lamas en Portugal: Passado y Presente. II Congreso Iberoamericano de Peloides, Balneário de Lanjarón. Libro de Resúmenes (Maraver F y Carretero M I, editores), 14–15

    Google Scholar 

  • Teixeira F (2012) O Termalismo na Região Centro. Capítulo XIII do livro “Águas Minerais Naturais e de Nascente da Região Norte”, Simões Cortez JA (Coordenador), Mare Liberum, FEDRAVE (editor), 261–300

    Google Scholar 

  • Teixeira F (2016) Termalismo terapêutico em Portugal: Presente e perspectivas futuras. Revista Factores de Risco, Sociedade Portuguesa de Cardiologia 41:26–37

    Google Scholar 

  • Teixeira F (2017) O Termalismo na Região Norte. Capítulo IV do livro “Águas Minerais Naturais e de Nascente da Região Norte”, Simões Cortez JA (Coordenador), Mare Liberum, FEDRAVE (editor), 159–193

    Google Scholar 

  • Thompson CJS (1914) Terra Sigillata, a famous medicamente of ancient times. In: Proceedings of the 17th international Congress of Medicine 23:433–434

    Google Scholar 

  • van Thienen G, Spee T (2008) Health effects of construction materials and construction products. Tijdschrift voor toegepaste Arbowetenschap, TTA brochure nr 1

    Google Scholar 

  • Varma R, Aronow WS, Basis Y, Singh T, Kalapatapu K, Weiss MB, Pucillo AL, Monsen CE (2008) Relation of bone mineral density to frequency of coronary heart disease. Am J Cardiol 101:1103–1104

    Article  Google Scholar 

  • Venieri D, Gounaki I, Christidis GE, Knapp CW, Bouras-Vallianatos P, Photos-Jones E (2020) Minerals. MDPI 10:348. https://doi.org/10.3390/min10040348

    Article  Google Scholar 

  • Vermed F, Vicente J, Hidalgo-Álvarez R (2009) Physical properties of elongated magnetic particles: magnetization and friction coefficient anisotropies. ChemPhysChem 10(8):1165–1179

    Article  Google Scholar 

  • Viseras C, López-Galindo A (1999) Pharmaceutical applications of some Spanish clays (sepiolite, palygorskite, bentonite): some pre-formulation studies. Appl Clay Sci 14:69–82

    Article  Google Scholar 

  • Viseras C, López-Galindo A (2000) Characteristics of pharmaceutical grade phyllosilicate powders. Pharm Dev Technol 5(1):47–52

    Article  Google Scholar 

  • Viseras C, Aguzzi C, Cerezo P, Lopez-Galindo A (2007) Uses of clay minerals in semisolid health care and therapeutic products. Appl Clay Sci 36:37–50

    Google Scholar 

  • Viseras C, Carazo E, Borrego-Sanchez A, Garcia-Villén F, Sánchez-Espejo R, Cerezo P, Aguzzi C (2019) Clay minerals in skin drug delivery. Clay Clay Miner. https://doi.org/10.1007/s42860-018-0003-7

  • Wara-Aswapati N, Krongnawakul D, Jirarviboon D, Adulyanon S, Karimbux N, Pitiphat W (2005) The effect of a new toothpaste containing potassium nitrate and triclosan on gingival health, plaque formation and dentine hypersensitivity. J Clin Periodontol 32(1):53–58. https://doi.org/10.1111/j.1600-051X.2004.00631.x

  • Williams RS (1986) The fascinating history of bezoars. Med J Aust 145:613–614

    Article  Google Scholar 

  • Williams LB and Haydel SE (2010) Evaluation of the medicinal use of clay minerals as antibacterial agentes. Int Geol Ver 52(7/8):745–770. https://doi.org/10.1080/00206811003679737

  • Williams-Jones G, Rymer H (2015) Hazards of volcanic gases, 2nd edn. The Encyclopedia of Volcanoes, pp 985–992

    Google Scholar 

  • Yan L, Zhang S, Chen P, Liu H, Yin H, Li H (2012) Magnetotactic bacteria, magnetosomes and their application. Microbiol Res 167:507–519. Elsevier

    Article  Google Scholar 

  • Yeshi K, Wangdi T, Namgyal Q, Nettles J, Craig SR, Schrempf M, Wangchuk P (2018) Geopharmaceuticals of Himalayan Sowa Rigpa medicine: Ethnopharmacological uses, mineral diversity, chemical identification and current utilization in Bhutan. J Ethnopharmacol 223:99–112

    Article  Google Scholar 

  • Yu W, Foster HD, Zhang T (1995) Discovering Chinese mineral drugs. J Orthomol Med 10

    Google Scholar 

  • Zhou CH, Keeling J (2013) Fundamental and applied research on clay minerals: from climate and environment to nanotechnology. Appl Clay Sci 74:3–9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Celso S. F. Gomes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gomes, C.S.F., Rautureau, M. (2021). Historical Evolution of the Use of Minerals in Human Health. In: Gomes, C., Rautureau, M. (eds) Minerals latu sensu and Human Health. Springer, Cham. https://doi.org/10.1007/978-3-030-65706-2_3

Download citation

Publish with us

Policies and ethics