Skip to main content

Exploration of Students’ Mathematical Creativity with Actor-Oriented Transfer to Develop Actor-Oriented Creativity

  • Chapter
  • First Online:
Transfer of Learning

Part of the book series: Research in Mathematics Education ((RME))

Abstract

The transfer of learning has been examined through various theoretical perspectives. One contemporary approach, the actor-oriented transfer (AOT) framework, was introduced to better understand the mechanisms of transfer from the learner’s (actor’s) perspective by emphasizing the need for a shift in the methodology of transfer studies. Similar to the construct of transfer, the exploration of mathematical creativity has been an ongoing quest of researchers, given that it is undeniably an important component of mathematicians’ work and crucial for the development of mathematics. Furthermore, creativity is claimed to help students with the development of knowledge and uses of such knowledge in other domains. However, explicit ways to value, enhance, and evaluate students’ mathematical creativity at the tertiary level require further investigations. This theoretical chapter examines the constructs of transfer and mathematical creativity and provides empirical examples to illustrate an implementation of AOT of students’ mathematical creativity at the tertiary level. An emerging actor-oriented creativity (AOc) construct is proposed as a way to further explorations of students’ mathematical creativity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Askew, M. (2013). Issues in teaching for and assessment of creativity in mathematics and science. In D. Corrigan, R. F. Gunstone, & A. Jones (Eds.), Valuing assessment in science education: Pedagogy, curriculum, policy (pp. 169–182). Dordrecht, The Netherlands: Springer.

    Chapter  Google Scholar 

  • Baer, J., & Kaufman, J. C. (2012). Being creative inside and outside the classroom: How to boost your students’ creativity–and your own (Vol. 2). Rotterdam, The Netherlands: Springer.

    Book  Google Scholar 

  • Balka, D. S. (1974). Creative ability in mathematics. Arithmetic Teacher, 21(7), 633–636. https://doi.org/10.5951/AT.21.7.0633.

    Article  Google Scholar 

  • Bassok, M. (1990). Transfer of domain-specific problem-solving procedures. Journal of Experimental Psychology: Learning, 16(3), 522–533. https://doi.org/10.1037/0278-7393.16.3.522.

    Article  Google Scholar 

  • Beghetto, R. A., & Kaufman, J. C. (2007). Toward a broader conception of creativity: A case for “mini-c” creativity. Psychology of Aesthetics, Creativity, and the Arts, 1(2), 73–79. https://doi.org/10.1037/1931-3896.1.2.73.

    Article  Google Scholar 

  • Borwein, P., Liljedahl, P., & Zhai, H. (Eds.). (2014). Mathematicians on creativity. Washington, DC: Mathematical Association of America.

    Google Scholar 

  • Bransford, J. D., Brown, A. L., & Cocking, R. R. (1999). Learning and transfer. In J. D. Bransford, A. L. Brown, & R. R. Cocking (Eds.), How people learn: Brain, mind experience, and school (pp. 51–78). Washington, DC: National Academy Press.

    Google Scholar 

  • Bransford, J. D., & Schwartz, D. L. (1999). Rethinking transfer: A simple proposal with multiple implications. In A. Iran-Nejad & P. D. Pearson (Eds.), Review of research in education (Vol. 24, pp. 61–100). Washington, DC: American Educational Research Association.

    Google Scholar 

  • Bressoud, D., Johnston, E., Murphy, C., Rhea, K., Williams, J., & Zorn, P. (n.d.). The calculus sequence (CUPM guide Calculus CASG report). Retrieved from https://www.maa.org/sites/default/files/CalculusCASGReportFinal.pdf.

  • Committee on the Undergraduate Programs in Mathematics. (2015). Curriculum guide to majors in the mathematical sciences. Washington DC: Mathematical Association of America.

    Google Scholar 

  • Craft, A. (2005). Creativity in schools: Tensions and dilemmas. New York, NY: Routledge.

    Book  Google Scholar 

  • Cropley, D. H. (2015). Teaching engineers to think creatively. In R. Wegerif, L. Li, & J. Kaufman (Eds.), The International handbook of research on teaching thinking (pp. 402–410). London, UK/New York, NY: Routledge.

    Google Scholar 

  • Csikszentmihalyi, M. (1999). Implications of a systems perspective for the study of creativity. In R. J. Sternberg (Ed.), Handbook of creativity (pp. 313–338). Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Cui, L., Rebello, N. S., Fletcher, P. R., & Bennett, A. G. (2006, April). Transfer of learning from college calculus to physics courses. In Proceedings of the annual meeting of the National Association for Research in Science Teaching, San Francisco, CA. Retrieved from https://www.researchgate.net/profile/N_Sanjay_Rebello/publication/242297311_TRANSFER_OF_LEARNING_FROM_COLLEGE_CALCULUS_TO_PHYSICS_COURSES/links/0c960532638f5bfd86000000.pdf.

  • Detterman, D. K. (1993). The case for the prosecution: Transfer as an epiphenomenon. In D. K. Detterman & R. J. Sternberg (Eds.), Transfer on trial: Intelligence, cognition, and instruction (pp. 1–24). Norwood, NJ: Ablex.

    Google Scholar 

  • Dewey, J. (1920). How we think. Boston, MA: Heath.

    Google Scholar 

  • Duncker, K. (1945). On problem-solving (L. S. Lees, Trans.). Psychological Monographs, 58(5), i–113. https://doi.org/10.1037/h0093599.

  • Gick, M. L., & Holyoak, K. J. (1980). Anagogical problem solving. Cognitive Psychology, 12(3), 306–355. https://doi.org/10.1016/0010-0285(80)90013-4.

    Article  Google Scholar 

  • Greeno, J. G., Smith, D. R., & Moore, J. L. (1993). Transfer of situated learning. In D. K. Detterman & R. J. Sternberg (Eds.), Transfer on trial: Intelligence, cognition, and instruction (pp. 99–167). Norwood, NJ: Ablex.

    Google Scholar 

  • Guilford, J. (1950). Creativity. American Psychologist, 5(9), 444–454. https://doi.org/10.1037/h0063487.

    Article  Google Scholar 

  • Guilford, J. (1959). Trends in creativity. In H. H. Anderson (Ed.), Creativity and its cultivation (pp. 142–161). New York, NY: Wiley.

    Google Scholar 

  • Guilford, J. (1967). The nature of human intelligence. New York, NY: McGraw-Hill.

    Google Scholar 

  • Hadamard, J. (1945). The mathematician’s mind. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Karakok, G. (2009). Students’ transfer of learning of eigenvalues and eigenvectors: Implementation of Actor-Oriented Transfer framework (Unpublished doctoral dissertation). Oregon State University, Corvallis, OR.

    Google Scholar 

  • Karakok, G. (2019). Making connections among representations of eigenvectors: What sort of a beast is it? ZDM Mathematics Education, 51(7), 1141–1152. https://doi.org/10.1007/s11858-019-01061-9.

    Article  Google Scholar 

  • Karakok, G., Savic, M., Tang, G., & El Turkey, H. (2015). Mathematicians’ views on undergraduate student creativity. In K. Krainer & N. Vondrová (Eds.), CERME 9—Ninth congress of the European Society for Research in Mathematics Education (pp. 1003–1009). Prague, Czech Republic. Retrieved from http://www.mathematik.uni-dortmund.de/ieem/erme_temp/CERME9.pdf

  • Karakok, G., Savic, M., Tang, G., El Turkey, H., Plaxco, D., & Naccarato, E. (2016). A rubric for creativity in writing proofs. The Mathematical Association of America Focus Magazine, 36(1), 42–43. Retrieved from http://digitaleditions.walsworthprintgroup.com/publication/?m=7656&i=293604&p=32.

    Google Scholar 

  • Kim, K.-H. (2012). The creativity crisis: The decrease in creative thinking scores on the Torrance Tests of Creative Thinking. Creativity Research Journal, 23(4), 285–295. https://doi.org/10.1080/10400419.2011.627805.

    Article  Google Scholar 

  • King, J. J. (2017). Students’ social adaptation to mathematics tasks (Unpublished doctoral dissertation). University of Northern Colorado, Greeley, CO.

    Google Scholar 

  • Kozbelt, A., Beghetto, R. A., & Runco, M. A. (2010). Theories of creativity. In J. C. Kaufman & R. J. Sternberg (Eds.), The Cambridge handbook of creativity (pp. 20–47). Cambridge, UK/New York, NY: Cambridge University Press.

    Chapter  Google Scholar 

  • Lave, J. (1988). Cognition in practice: Mind, mathematics and culture in everyday life. Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

  • Leikin, R. (2009). Exploring mathematical creativity using multiple solution tasks. In R. Leikin, A. Berman, & B. Koichu (Eds.), Creativity in mathematics and the education of gifted students (pp. 129–145). Haifa, Israel: Sense.

    Chapter  Google Scholar 

  • Leikin, R. (2014). Challenging mathematics with multiple solution tasks and mathematical investigations in geometry. In Y. Li, E. A. Silver, & S. Li (Eds.), Transforming mathematics instruction (pp. 59–80). Dordrecht, The Netherlands: Springer.

    Google Scholar 

  • Leikin, R., & Pitta-Pantazi, D. (2013). Creativity and mathematics education: The state of the art. ZDM Mathematics Education, 45(2), 159–166. https://doi.org/10.1007/s11858-012-0459-1.

    Article  Google Scholar 

  • Lester, S. (1999). An introduction to phenomenological research. Taunton, UK: Stan Lester Developments.

    Google Scholar 

  • Liljedahl, P. (2013). Illumination: An affective experience? ZDM Mathematics Education, 45(2), 253–265. https://doi.org/10.1007/s11858-012-0473-3.

    Article  Google Scholar 

  • Liljedahl, P., & Sriraman, B. (2006). Musings on mathematical creativity. For the Learning of Mathematics, 26(1), 17–19. Retrieved from https://www.jstor.org/stable/40248517.

    Google Scholar 

  • Lobato, J. (2003). How design experiments can inform rethinking of transfer and vice versa. Educational Researcher, 32(1), 17–20. https://doi.org/10.3102/0013189X032001017.

    Article  Google Scholar 

  • Lobato, J. (2006). Alternative perspectives on the transfer of learning: History, issues, and challenges for future research. The Journal of the Learning Sciences, 15(4), 431–449. https://doi.org/10.1207/s15327809jls1504_1.

    Article  Google Scholar 

  • Lobato, J. (2012). The actor-oriented transfer perspective and its contributions to educational research and practice. Educational Psychologist, 47(3), 232–247. https://doi.org/10.1080/00461520.2012.693353.

    Article  Google Scholar 

  • Lobato, J., & Siebert, D. (2002). Quantitative reasoning in a reconceived view of transfer. Journal of Mathematical Behavior, 21(1), 87–116. https://doi.org/10.1016/S0732-3123(02)00105-0.

    Article  Google Scholar 

  • Lockwood, E. (2011). Student connections among counting problems: An exploration using actor-oriented transfer. Educational Studies in Mathematics, 78(3), 307–322. https://doi.org/10.1007/s10649-011-9320-7.

    Article  Google Scholar 

  • Luria, S. R., Sriraman, B., & Kaufman, J. C. (2017). Enhancing equity in the classroom by teaching for mathematical creativity. ZDM Mathematics Education, 49(7), 1033–1039. https://doi.org/10.1007/s11858-017-0892-2.

    Article  Google Scholar 

  • Mann, E. L. (2006). Creativity: The essence of mathematics. Journal for the Education of the Gifted, 30(2), 236–260. https://doi.org/10.4219/jeg-2006-264.

    Article  Google Scholar 

  • Mayer, R. E., & Wittrock, M. C. (1996). Problem-solving transfer. In D. Berliner & R. Calfee (Eds.), Handbook of educational psychology (pp. 45–61). New York, NY: Macmillan.

    Google Scholar 

  • Mestre, J. (2003). Transfer of learning: Issues and research agenda. Retrieved from http://www.nsf.gov/pubs/2003/nsf03212/.

  • Nadjafikhah, M., Yaftian, N., & Bakhshalizadeh, S. (2012). Mathematical creativity: Some definitions and characteristics. Procedia - Social and Behavioral Sciences, 31, 285–291. https://doi.org/10.1016/j.sbspro.2011.12.056.

    Article  Google Scholar 

  • National Council of Supervisors of Mathematics. (2012). Improving student achievement in mathematics by expanding opportunities for our most promising students of mathematics. Denver, CO: Author.

    Google Scholar 

  • National Council of Teachers of Mathematics. (1980). Agenda for action. Reston, VA: Author.

    Google Scholar 

  • National Science Board. (2010). Preparing the next generation of STEM innovators: Identifying and developing our nation’s human capital (NSB-10-33). Arlington, VA: National Science Foundation.

    Google Scholar 

  • Omar, M., Karakok, G., Savic, M., & El Turkey, H. (2019). “I felt like a mathematician”: Homework problems to promote creative effort and metacognition. Problems, Resources, and Issues in Mathematics Undergraduate Studies (PRIMUS), 29(1), 82–102. https://doi.org/10.1080/10511970.2018.1475435.

    Article  Google Scholar 

  • Partnership for 21st Century Skills. (2006). A state leader’s action guide to 21st century skills: A new vision for education. Tucson, AZ: Author.

    Google Scholar 

  • Patton, M. Q. (2002). Qualitative research and evaluation methods. Thousand Oaks, CA: Sage.

    Google Scholar 

  • Pitta-Pantazi, D., Kattou, M., & Christou, C. (2018). Mathematical creativity: Product, person, process and press. In F. Singer (Ed.), Mathematical creativity and mathematical giftedness. ICME-13 Monographs (pp. 27–53). Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-319-73156-8_2.

    Chapter  Google Scholar 

  • Runco, M. A., & Jaeger, G. J. (2012). The standard definition of creativity. Creativity Research Journal, 24(1), 92–96. https://doi.org/10.1080/10400419.2012.650092.

    Article  Google Scholar 

  • Sadler-Smith, E. (2015). Wallas’ four-stage model of the creative process: More than meets the eye? Creativity Research Journal, 27(4), 342–352. https://doi.org/10.1080/10400419.2015.1087277.

    Article  Google Scholar 

  • Savic, M., Karakok, G., Tang, G., El Turkey, H., & Naccarato, E. (2017). Formative assessment of creativity in undergraduate mathematics: Using a creativity-in-progress rubric (CPR) on proving. In R. Leikin & B. Sriraman (Eds.), Creativity and giftedness: Interdisciplinary perspectives from mathematics and beyond (pp. 23–46). New York, NY: Springer.

    Chapter  Google Scholar 

  • Schoenfeld, A. H. (1985). Mathematical problem solving. Orlando, FL: Academic.

    Google Scholar 

  • Schöning, M., & Witcomb, C. (2017, September 15). This is the one skill your child needs for the jobs of the future. World Economic Forum. Retrieved from https://www.weforum.org/agenda/2017/09/skills-children-need-work-future-play-lego/.

  • Schumacher, C. S., & Siegel, M. J. (2015). 2015 CUPM curriculum guide to majors in the mathematical sciences. Washington, DC: Mathematical Association of America.

    Google Scholar 

  • Schwartz, D. L., Bransford, J. D., & Sears, D. (2005). Efficiency and innovation in transfer. In J. P. Mestre (Ed.), Transfer of learning from a modern multidisciplinary perspective (pp. 1–51). Greenwich, CT: Information Age.

    Google Scholar 

  • Shanks, D. R. (2007). Associationism and cognition: Human contingency learning at 25. The Quarterly Journal of Experimental Psychology, 60(3), 291–309. https://doi.org/10.1080/17470210601000581.

    Article  Google Scholar 

  • Sheffield, L. (2009). Developing mathematical creativity—questions may be the answer. In R. Leikin, A. Berman, & B. Koichu (Eds.), Creativity in mathematics and the education of gifted students (pp. 87–100). Rotterdam, The Netherlands: Sense.

    Google Scholar 

  • Sheffield, L. J. (2013). Creativity and school mathematics: Some modest observations. ZDM Mathematics Education, 45(2), 325–332. https://doi.org/10.1007/s11858-013-0484-8.

    Article  Google Scholar 

  • Silver, E. A. (1997). Fostering creativity through instruction rich in mathematical problem solving and problem posing. ZDM Mathematical Education, 29(3), 75–80. https://doi.org/10.1007/s11858-997-0003-x.

    Article  Google Scholar 

  • Sriraman, B. (2004). The characteristics of mathematical creativity. The Mathematics Educator, 14(1), 19–34.

    Google Scholar 

  • Sriraman, B. (2005). Are giftedness and creativity synonyms in mathematics? Journal of Secondary Gifted Education, 17(1), 20–36. https://doi.org/10.4219/jsge-2005-389.

    Article  Google Scholar 

  • Sriraman, B. (2009). The characteristics of mathematical creativity. ZDM Mathematics Education, 41(1–2), 13–27. https://doi.org/10.1007/s11858-008-0114-z.

    Article  Google Scholar 

  • Starko, A. J. (2017). Creativity in the classroom: Schools of curious delight (6th ed.). New York, NY: Routledge.

    Book  Google Scholar 

  • Tang, G., El Turkey, H., Savic, M., & Karakok, G. (2015). Exploration of undergraduate students’ and mathematicians’ perspectives on creativity. In T. Fukawa-Connelly, N. Infante, K. Keene, & M. Zandieh (Eds.), Proceedings of the 18th annual conference on Research in Undergraduate Mathematics Education (pp. 993–1000). Pittsburgh, PA. Retrieved from http://sigmaa.maa.org/rume/RUME18v2.pdf.

  • Thorndike, E. L. (1903). Educational psychology. New York, NY: Lemke & Buechner.

    Book  Google Scholar 

  • Torrance, E. P. (1966). The Torrance tests of creative thinking: Technical-norms manual. Princeton, NJ: Personnel Press.

    Google Scholar 

  • Tuomi-Gröhn, T., & Engeström, Y. (2003). Conceptualizing transfer: From standard notions to developmental perspectives. In T. Tuomi-Grohn & Y. Engeström (Eds.), Between school and work: New perspectives on transfer and boundary-crossing (pp. 19–38). New York, NY: Pergamon.

    Google Scholar 

  • Ward, T. B., & Kolomyts, Y. (2010). Cognition and creativity. In J. C. Kaufman & R. J. Sternberg (Eds.), The Cambridge handbook of creativity (pp. 93–112). Cambridge, UK/New York, NY: Cambridge University Press.

    Chapter  Google Scholar 

  • Weber, K. (2005). Problem-solving, proving, and learning: The relationship between problem-solving processes and learning opportunities in the activity of proof construction. The Journal of Mathematical Behavior, 24(3–4), 351–360. https://doi.org/10.1016/j.jmathb.2005.09.005.

    Article  Google Scholar 

  • Woodworth, R. S., & Thorndike, E. L. (1901). The influence of improvement in one mental function upon the efficiency of other functions. (I). Psychological Review, 8(3), 247–261. https://doi.org/10.1037/h0074898.

    Article  Google Scholar 

  • Zazkis, R., & Holton, D. (2009). Snapshots of creativity in undergraduate mathematics education. In R. Leikin, A. Berman, & B. Koichu (Eds.), Creativity in mathematics and the education of gifted students (pp. 345–365). Haifa, Israel: Sense.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gulden Karakok .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karakok, G. (2021). Exploration of Students’ Mathematical Creativity with Actor-Oriented Transfer to Develop Actor-Oriented Creativity. In: Hohensee, C., Lobato, J. (eds) Transfer of Learning. Research in Mathematics Education. Springer, Cham. https://doi.org/10.1007/978-3-030-65632-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65632-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65631-7

  • Online ISBN: 978-3-030-65632-4

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics