Skip to main content

Biosensors with Porous and Perforated Membranes

  • Chapter
  • First Online:
Mathematical Modeling of Biosensors

Part of the book series: Springer Series on Chemical Sensors and Biosensors ((SSSENSORS,volume 9))

Abstract

The additional application of catalytically inactive membranes can solve some drawbacks of biosensors, such as a relatively short linear range of the calibration graph, an instability and a low specificity. The selective membranes are usually used to increase the biosensors specificity. In this chapter, amperometric biosensors with inert and selective membranes are mathematically modeled by nonlinear reaction–diffusion equations containing a nonlinear term related to the Michaelis–Menten kinetics of an enzymatic reaction. At first, a biosensor, containing enzymatic and outer inert membranes , is mathematically and numerically modeled by a three-compartment model in one-dimensional space at transient conditions. Then, the model is extended to cover a transducer with an additional selective membrane permeable for the product of the enzymatic reaction, and the output results are numerically analysed with a special emphasis on the influence of the selective membrane to the biosensor response . And finally, the biosensor with selective and outer perforated membranes is modeled in two-dimensions. The biosensor response is analysed with a special focus on the geometry of the membrane perforation

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Antiochia R, Lavagnini I, Magno F (2004) Amperometric mediated carbon nanotube paste biosensor for fructose determination. Anal Lett 37(8):1657–1669

    Article  Google Scholar 

  2. Bacon NC, Hall E (1999) A sandwich enzyme electrode giving electrochemical scavenging of interferents. Electroanal 11(10–11):749–755

    Article  Google Scholar 

  3. Baeumner A, Jones C, Wong C, Price A (2004) A generic sandwich-type biosensor with nanomolar detection limits. Anal Bioanal Chem 378(6):1587–1593

    Article  Google Scholar 

  4. Bakhvalov N, Panasenko G (1989) Homogenization: averaging processes in periodic media. Kluwer Academic Publishers, Dordrecht

    Book  MATH  Google Scholar 

  5. Banica FG (2012) Chemical sensors and biosensors: fundamentals and applications. John Wiley & Sons, Chichester

    Book  Google Scholar 

  6. Baronas R, Ivanauskas F, Kulys J (1999) Modeling a biosensor based on the heterogeneous microreactor. J Math Chem 25(3–4):245–252

    Article  MATH  Google Scholar 

  7. Baronas R, Ivanauskas F, Survila A (2000) Simulation of electrochemical behavior of partially blocked electrodes under linear potential sweep conditions. J Math Chem 27(4):267–278

    Article  MATH  Google Scholar 

  8. Baronas R, Ivanauskas F, Kulys J (2003) Computer simulation of the response of amperometric biosensors in stirred and non stirred solution. Nonlinear Anal Modell Control 8(1):3–18

    Article  MATH  Google Scholar 

  9. Baronas R, Ivanauskas F, Kulys J, Sapagovas M (2004) Computational modeling of a sensor based on an array of enzyme microreactors. Nonlinear Anal Model Control 9(1):203–218

    Article  MATH  Google Scholar 

  10. Baronas R, Ivanauskas F, Kaunietis I (2006) Laurinavicius V mathematical modeling of plate-gap biosensors with an outer porous membrane. Sensors 6(7):727–745

    Google Scholar 

  11. Baronas R, Ivanauskas F, Kulys J (2006) Mathematical modeling of biosensors based on an array of enzyme microreactors. Sensors 6(4):453–465

    Article  Google Scholar 

  12. Baronas R, Kulys J, Ivanauskas F (2006) Computational modeling of biosensors with perforated and selective membranes. J Math Chem 39(2):345–362

    Article  MathSciNet  MATH  Google Scholar 

  13. Baronas R, Ivanauskas F, Kulys J (2007) Computational modeling of amperometric enzyme electrodes with selective and perforated membranes. In: Computation in modern science and engineering: proceedings of the international conference on computational methods in science and engineering 2007 (ICCMSE 2007). Parts A and B, vol 2. AIP Press, College Park, pp 457–460

    Google Scholar 

  14. Bartlett PN (2008) Bioelectrochemistry: fundamentals, experimental techniques and applications. John Wiley & Sons, Chichester

    Book  Google Scholar 

  15. Bergel A, Comtat M (1984) Theoretical evaluation of transient responses of an amperometricenzyme electrode. Anal Chem 56(14):2904–2909

    Article  Google Scholar 

  16. Bieniasz L, Britz D (2004) Recent developments in digital simulation of electroanalytical experiments. Pol J Chem 78(9):1195–1219

    Google Scholar 

  17. Bindra D, Zhang Y, Wilson G, Sternberg R, Thévenot D, Moatti D, Reach G (1991) Design and in vitro studies of a needle-type glucose sensor for subcutaneous monitoring. Anal Chem 63(17):1692–1696

    Article  Google Scholar 

  18. Britz D (2005) Digital simulation in electrochemistry, 3rd edn. Springer, Berlin

    Book  MATH  Google Scholar 

  19. Conway GE, Lambertson RH, Schwarzmann MA, Pannell MJ, Kerins HW, Rubenstein KJ, Dattelbaum JD, Leopold MC (2016) Layer-by-layer design and optimization of xerogel-based amperometric first generation biosensors for uric acid. J Electroanal Chem 775:135–145

    Article  Google Scholar 

  20. Deslous C, Gabrielli C, Keddam M, Khalil A, Rosset R, Trobollet B, Zidoune M (1997) Impedance techniques at partially blocked electrodes by scale deposition. Electrochim Acta 42(8):1219–1233

    Article  Google Scholar 

  21. Dohnal M (1992) Qualitative partial differential equations and their realistic applications. Comput Ind 20(2):209–217

    Article  MathSciNet  Google Scholar 

  22. Fraser D (1997) Biosensors in the body: continuous in vivo monitoring. John Wiley & Sons, Chichester

    Google Scholar 

  23. Frew JE, Hill HAO (1987) Electrochemical biosensors. Anal Chem 59(15):933A–944A

    Article  Google Scholar 

  24. Grieshaber D, MacKenzie R, Vörös J, Reimhult E (2008) Electrochemical biosensors – sensor principles and architectures. Sensors 8(3):1400–1458

    Article  Google Scholar 

  25. Gueshi T, Tokuda K, Matsuda H (1978) Voltammetry at partially covered electrodes: Part I. Chronopotentiometry and chronoamperometry at model electrodes. J Electroanal Chem 89(2):247–260

    Article  Google Scholar 

  26. Ivanauskas F, Baronas R (2008) Numerical simulation of a plate-gap biosensor with an outer porous membrane. Simul Model Pract Theory 16(8):962–970

    Article  Google Scholar 

  27. Ivanauskas F, Baronas R, Kulys J (2005) Mathematical modeling of biosensors with perforated and selective membranes. Rakenteiden Mekaniikka J Struct Mech 38(3):63–66

    MATH  Google Scholar 

  28. Kasche V, Kapune A, Schwegler H (1999) Potentiometric determination of NAD(P)H coenzymes using a nitrite-selective membrane electrode and a nitrate reductase enzyme and the application to glucose assay in human serum. Anal Sci 15(2):135–139

    Article  Google Scholar 

  29. Kulys J, Bratkovskaja I, Ašeris V, Baronas R (2013) Electrochemical peroxidase-catalase Clark-type biosensor: computed and experimental response. Electroanal 25(6):1491–1496

    Article  Google Scholar 

  30. Laurinavicius V, Kulys J, Gureviciene V, Simonavicius K (1989) Flow through and cateter biosensors with an extended concentration range. Biomed Biochem Acta 48(11–12):905–909

    Google Scholar 

  31. Lyons M, Murphy J, Rebouillat S (2000) Theoretical analysis of time dependent diffusion, reaction and electromigration in membranes. J Solid State Electrochem 4(8):458–472

    Article  Google Scholar 

  32. Malhotra BD, Pandey CM (2017) Biosensors: fundamentals and applications. Smithers Rapra, Shawbury

    Google Scholar 

  33. Meskauskas T, Ivanauskas F, Laurinavicius V (2013) Degradation of substrate and/or product: mathematical modeling of biosensor action. J Math Chem 51(9):2491–2502

    Article  MathSciNet  MATH  Google Scholar 

  34. Meskauskas T, Ivanauskas F, Laurinavicius V (2013) Numerical modeling of multilayer biosensor with degrading substrate and product. In: AlBegain K, AlDabass D, Orsoni A, Cant R, Zobel R (eds.) 8th EUROSIM congress on modelling and simulation (EUROSIM), Cardiff, pp 24–29

    Google Scholar 

  35. Meyerhoff M, Duan C, Meusel M (1995) Novel nonseparation sandwich-type electrochemical enzyme immunoassay system for detecting marker proteins in undiluted blood. Clin Chem 41(9)

    Google Scholar 

  36. Moreira JE, Midkiff SP, Gupta M, Artigas PV, Snir M, Lawrence RD (2000) Java programming for high-performance numerical computing. IBM Syst J 39(1):21–56

    Article  Google Scholar 

  37. Petrauskas K, Baronas R (2009) Computational modelling of biosensors with an outer perforated membrane. Nonlinear Anal Model Control 14(1):85–102

    Article  MATH  Google Scholar 

  38. Pfeiffer D, Scheller F, Setz K, Schubert F (1993) Amperometric enzyme electrodes for lactate and glucose determinations in highly diluted and undiluted media. Anal Chim Acta 281(3)

    Google Scholar 

  39. Puida M, Ivanauskas F, Laurinavičius V (2010) Mathematical modeling of the action of biosensor possessing variable parameters. J Math Chem 47(1):191–200

    Article  MathSciNet  MATH  Google Scholar 

  40. Sadana A, Sadana N (2011) Handbook of Biosensors and Biosensor Kinetics. Elsevier, Amsterdam

    MATH  Google Scholar 

  41. Samarskii A (2001) The theory of difference schemes. Marcel Dekker, New York

    Book  MATH  Google Scholar 

  42. Scheller F, Pfeiffer D (1978) Enzymelektroden. Z Chem 18(2):50–57

    Article  Google Scholar 

  43. Scheller FW, Schubert F (1992) Biosensors. Elsevier Science, Amsterdam

    Google Scholar 

  44. Schöning M (2005) “Playing around” with field-effect sensors on the basis of EIS structures, LAPS and ISFETS. Sensors 5(3):126–138

    Article  Google Scholar 

  45. Schulmeister T (1990) Mathematical modelling of the dynamic behaviour of amperometric enzyme electrodes. Sel Electrode Rev 12(2):203–260

    Google Scholar 

  46. Schulmeister T, Pfeiffer D (1193) Mathematical modelling of amperometric enzyme electrodes with perforated membranes. Biosens Bioelectron 8(2):75–79

    Google Scholar 

  47. Šimelevičius D, Petrauskas K, Baronas R, Razumienė J (2014) Computational modeling of mediator oxidation by oxygen in an amperometric glucose biosensor. Sensors 14(2):2578–2594

    Article  Google Scholar 

  48. Takoh K, Ishibashi T, Matsue T, Nishizawa M (2005) Localized chemical stimulation of cellular micropatterns using a porous membrane-based culture substrate. Sens Actuators B Chem 108(1–2):683–687

    Article  Google Scholar 

  49. Treloar P, Christie I, Vadgama P (1995) Engineering the right membranes for electrodes at the biological interface; solvent cast and electropolymerised. Biosens Bioelectron 10(1–2):195–201

    Article  Google Scholar 

  50. Turner APF, Karube I, Wilson GS (eds.) (1990) Biosensors: fundamentals and applications. Oxford University Press, Oxford

    Google Scholar 

  51. Whitaker S (1999) The method of volume averaging. Theory and applications of transport in porous media. Kluwer, Boston

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baronas, R., Ivanauskas, F., Kulys, J. (2021). Biosensors with Porous and Perforated Membranes. In: Mathematical Modeling of Biosensors. Springer Series on Chemical Sensors and Biosensors, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-030-65505-1_8

Download citation

Publish with us

Policies and ethics