Skip to main content

Biosensors Acting in Injection Mode

  • Chapter
  • First Online:
Mathematical Modeling of Biosensors

Part of the book series: Springer Series on Chemical Sensors and Biosensors ((SSSENSORS,volume 9))

  • 389 Accesses

Abstract

This chapter numerically investigates the sensitivity of an amperometric biosensor acting in the flow injection mode when the biosensor contacts an analyte for a short time. The analytical system is modeled by non-stationary reaction–diffusion equations containing a nonlinear term related to the Michaelis–Menten kinetics of an enzymatic reaction. At first, the biosensor action is modeled by a mono-layer mono-enzyme model assuming no external diffusion limitation. Then, the model is extended to a two-compartment model by adding an outer diffusion layer . The biosensor operation is analysed with a special emphasis to the conditions at which the biosensor sensitivity can be increased and the calibration curve can be prolonged by changing the injection duration, the permeability of the external diffusion layer , the thickness of the enzyme layer and the catalytic activity of the enzyme. The apparent Michaelis constant is used as a main characteristic of the sensitivity and the calibration curve of the biosensor. The numerical simulation was carried out using the finite difference technique .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ames W (1977) Numerical methods for partial differential equations, 2nd edn. Academic Press, New-York

    MATH  Google Scholar 

  2. Baronas D, Ivanauskas F, Baronas R (2011) Mechanisms controlling the sensitivity of amperometric biosensors in flow injection analysis systems. J Math Chem 49(8):1521–1534

    Article  MathSciNet  MATH  Google Scholar 

  3. Baronas R (2017) Nonlinear effects of diffusion limitations on the response and sensitivity of amperometric biosensors. Electrochim Acta 240:399–407

    Article  Google Scholar 

  4. Baronas R, Baronas D (2013) Modeling and simulation of amperometric biosensors acting in flow injection analysis. In: Bruzzone A, Jimenez E, Longo F, Merkuryev Y (eds) Proceedings of the European modeling and simulation symposium, Render (CS), Italy, pp 107–114

    Google Scholar 

  5. Baronas R, Ivanauskas F, Kulys J (2002) Modelling dynamics of amperometric biosensors in batch and flow injection analysis. J Math Chem 32(2):225–237

    Article  MathSciNet  MATH  Google Scholar 

  6. Baronas R, Ivanauskas F, Kulys J (2010) Mathematical modeling of biosensors. Springer, Dordrecht

    Book  MATH  Google Scholar 

  7. Baronas R, Ivanauskas F, Maslovskis R, Radavičius M, Vaitkus P (2007) Locally weighted neural networks for an analysis of the biosensor response. Kybernetika 43(1):21–30

    MathSciNet  MATH  Google Scholar 

  8. Bartlett P, Whitaker R (1987) Electrochemical immobilisation of enzymes: part 1. theory. J Electroanal Chem 224:27–35

    Article  Google Scholar 

  9. Briggs G, Haldane J (1925) A note on the kinetics of enzyme action. Biochem J 19:338–339

    Article  Google Scholar 

  10. Britz D, Baronas R, Gaidamauskaitė E, Ivanauskas F (2009) Further comparisons of finite difference schemes for computational modelling of biosensors. Nonlinear Anal Model Control 14(4):419–433

    Article  MathSciNet  MATH  Google Scholar 

  11. Britz D, Strutwolf J (2016) Digital simulation in electrochemistry. Monographs in electrochemistry, 4th edn. Springer, Cham (2016)

    Google Scholar 

  12. Butmee P, Prasertsri S, Pimmongkol S, Tumcharern G, Vesel, A, Mehmeti E, Kalcher K, Samphao A (2017) A biosensor for the determination of ammonium ion using flow injection amperometric system. Mon Chem 148(4):635–644

    Article  Google Scholar 

  13. Cervini P, Éder Tadeu, Cavalheiro G (2008) Determination of paracetamol at a graphite-polyurethane composite electrode as an amperometric flow detector. J Braz Chem Soc 19(5):836–841

    Article  Google Scholar 

  14. Ferreira LS, Souza MBD, Trierweiler JO, Hitzmann B, Folly R (2003) Analysis of experimental biosensor/FIA lactose measurements. J Braz Chem Soc 20(1):7–13

    Google Scholar 

  15. Frangu A, Pravcová K, Šilarová P, Arbneshi T, Sýs M (2019) Flow injection tyrosinase biosensor for direct determination of acetaminophen in human urine. Anal Bioanal Chem 411(11):2415–2424

    Article  Google Scholar 

  16. Gough DA, Leypoldt JK (1979) Membrane-covered, rotated disk electrode. Anal Chem 51(3):439–444

    Article  Google Scholar 

  17. de Gracia J, Poch M, Martorell D, Alegret S (1996) Use of mathematical models to describe dynamic behaviour of potentiometric biosensors: comparison of deterministic and empirical approaches to an urea flow-through biosensor. Biosens Bioelectron 11(1–2):53–61

    Article  Google Scholar 

  18. Gutfreund H (1995) Kinetics for the life sciences. Cambridge University Press, Cambridge

    Book  Google Scholar 

  19. Ivanauskas F, Baronas R (2008) Modeling an amperometric biosensor acting in a flowing liquid. Int J Numer Meth Fluids 56(8):1313–1319

    Article  MATH  Google Scholar 

  20. Ivanauskas F, Kaunietis I, Laurinavičius V, Razumienė J, Šimkus R (2008) Apparent Michaelis constant of the enzyme modified porous electrode. J Math Chem 43(4):1516–1526

    Article  MathSciNet  MATH  Google Scholar 

  21. Kulys J (1981) The development of new analytical systems based on biocatalysts. Anal Lett 14(6):377–397

    Article  Google Scholar 

  22. Lammertyn J, Verboven P, Veraverbeke E, Vermeir S, Irudayaraj J, Nicolai B (2006) Analysis of fluid flow and reaction kinetics in a flow injection analysis biosensor. Sens Actuator B Chem 114(2):728–736

    Article  Google Scholar 

  23. Lüdi H, Garn M, Bataillard P, Widmer H (1990) Flow injection analysis and biosensors: applications for biotechnology and environmental control. J Biotechnol 14(1):71–79

    Article  Google Scholar 

  24. Lyons MEG (2006) Modelling the transport and kinetics of electroenzymes at the electrode/solution interface. Sensors 6(12):1765–1790

    Article  Google Scholar 

  25. MacLaurin P, Andrew K, Worsfold P (1995) Flow injection analysis. In: McLennan F, Kowalski B (eds) Process analytical chemistry. Springer, Dordrecht, pp 159–182

    Chapter  Google Scholar 

  26. Mello LD, Kubota LT (2002) Review of the use of biosensors as analytical tools in the food and drink industries. Food Chem 77(2):237–256

    Article  Google Scholar 

  27. Michaelis L, Menten ML (1913) Die Kinetik der Invertinwirkung. Biochem Z 49:333–369

    Google Scholar 

  28. Olea D, Viratelle O, Faure C (2008) Polypyrrole-glucose oxidase biosensor: effect of enzyme encapsulation in multilamellar vesicles on analytical properties. Biosens Bioelectron 23(6):788–794

    Article  Google Scholar 

  29. Oliveira MC, Lanza MR, Tanaka AA, Sotomayor MDPT (2010) Flow injection analysis of paracetamol using a biomimetic sensor as a sensitive and selective amperometric detector. Anal Methods 2(5):507–512

    Article  Google Scholar 

  30. Osipov AP, Zaitseva NV, Egorov AM (1996) Chemiluminescent immunoenzyme biosensor with a thin-layer flow-through cell. Application for study of a real-time bimolecular antigen-antibody interaction. Biosens Bioelectron 11(9):881–887

    Article  Google Scholar 

  31. Piano M, Serban S, Pittson R, Drago G, Hart J (2010) Amperometric lactate biosensor for flow injection analysis based on a screen-printed carbon electrode containing Meldola’s Blue-Reinecke salt, coated with lactate dehydrogenase and NAD+. Talanta 82(1):34–37

    Article  Google Scholar 

  32. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2007) Numerical recipes: the art of scientific computing, 3rd edn. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  33. Prieto-Simón B, Campás M, Andreescu S, Marty JL (2006) Trends in flow-based biosensing systems for pesticide assessment. Sensors 6(10):1161–1186

    Article  Google Scholar 

  34. Nenkova R, Atanasova DI, Godjevargova T (2010) Flow injection analysis for amperometric detection of glucose with immobilized enzyme reactor. Biotechnol Biotechnol Equ 24(3):1986–1992

    Article  Google Scholar 

  35. Ruzicka J, Hansen E (1988) Flow injection analysis. Wiley, New York

    Google Scholar 

  36. Samarskii A (2001) The theory of difference schemes. Marcel Dekker, New York

    Book  MATH  Google Scholar 

  37. Scheller FW, Schubert F (1992) Biosensors. Elsevier, Amsterdam

    Google Scholar 

  38. Schmidt HL, Becker T, Ogbomo I, Schuhmann W (1996) Flow-injection analysis systems with immobilized enzymes. Improvement of applicability by integration of coupled reactions, separation steps and background correction. Talanta 43(6):937–942

    Article  Google Scholar 

  39. Schulmeister T (1990) Mathematical modelling of the dynamic behaviour of amperometric enzyme electrodes. Sel Electrode Rev 12(2):203–260

    Google Scholar 

  40. Tran-Minh C (1996) Biosensors in flow-injection systems for biomedical analysis, process and environmental monitoring. J Molec Recogn 9(5–6):658–663

    Article  Google Scholar 

  41. Štikonienė O, Ivanauskas F, Laurinavičius V (2010) The influence of external factors on the operational stability of the biosensor response. Talanta 81(4–5):1245–1249

    Article  Google Scholar 

  42. Yang M, Lee KG, Kim JW, Lee SJ, Huh YS, Choi BG (2014) Highly ordered gold-nanotube films for flow-injection amperometric glucose biosensors. RSC Adv 4(76):40286–40291

    Article  Google Scholar 

  43. Zhang S, Zhao H, John R (2001) Development of a quantitative relationship between inhibition percentage and both incubation time and inhibitor concentration for inhibition biosensors-theoretical and practical considerations. Biosens Bioelectron 16(9–12):1119–1126

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baronas, R., Ivanauskas, F., Kulys, J. (2021). Biosensors Acting in Injection Mode. In: Mathematical Modeling of Biosensors. Springer Series on Chemical Sensors and Biosensors, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-030-65505-1_6

Download citation

Publish with us

Policies and ethics