Skip to main content

Biosensors Utilizing Synergistic Substrates Conversion

  • Chapter
  • First Online:
Mathematical Modeling of Biosensors

Part of the book series: Springer Series on Chemical Sensors and Biosensors ((SSSENSORS,volume 9))

  • 392 Accesses

Abstract

Biosensors containing glucose oxidase, carbohydrate oxidase and laccase and utilizing a few synergistic schemes of substrates conversion are modeled at steady state and transient conditions. A glucose dehydrogenase-based bioelectrocatalytical system, where ferricyanide is converted to ferrocyanide in the presence of highly reactive organic electron transfer compounds, and a laccase-based bioelectrode utilizing synergistic N-substituted phenothiazine and phenoxazine oxidation in the presence of hexacyanoferrate (II) are modeled mathematically by nonlinear reaction–diffusion equations. The modeling biosensors comprise three compartments, an enzyme layer, a dialysis membrane and an outer diffusion layer. The digital simulation was carried out using the finite difference technique. By changing the input parameters, the action of biosensors was analysed with a special emphasis to the influence of the kinetic constants and reagents concentrations on the synergy of the simultaneous substrates conversion. The digital simulation of the system confirmed that the high sensitivity of the bioelectrode achieved in the presence of organic mediators is due to the synergistic substrates conversion demonstrated experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ašeris V, Gaidamauskaitė E, Kulys J, Baronas R (2014) Modelling the biosensor utilising parallel substrates conversion. Electrochim Acta 146:752–758

    Article  Google Scholar 

  2. Banica FG (2012) Chemical sensors and biosensors: fundamentals and applications. Wiley, Chichester

    Book  Google Scholar 

  3. Baronas R, Ivanauskas F, Kulys J (2004) The effect of diffusion limitations on the response of amperometric biosensors with substrate cyclic conversion. J Math Chem 35(3):199–213

    Article  MathSciNet  Google Scholar 

  4. Baronas R, Kulys J, Ivanauskas F (2004) Modelling amperometric enzyme electrode with substrate cyclic conversion. Biosens Bioelectron 19(8):915–922

    Article  Google Scholar 

  5. Baronas R, Žilinskas A, Litvinas L (2016) Optimal design of amperometric biosensors applying multi-objective optimization and decision visualization. Electrochim Acta 211:586–594

    Article  Google Scholar 

  6. Bartlett P, Pratt K (1995) Theoretical treatment of diffusion and kinetics in amperometric immobilized enzyme electrodes. Part I: redox mediator entrapped within the film. J Electroanal Chem 397(1–2):61–78

    Article  Google Scholar 

  7. Bird RB, Stewart WE, Lightfoot EN (2006) Transport phenomena, 2nd edn. Wiley, New York

    Google Scholar 

  8. Britz D (2005) Digital simulation in electrochemistry, 3rd edn. Springer, Berlin

    Book  Google Scholar 

  9. Britz D, Strutwolf J (2016) Digital simulation in electrochemistry. Monographs in electrochemistry. Springer, Cham (2016)

    Google Scholar 

  10. Britz D, Baronas R, Gaidamauskaitė E, Ivanauskas F (2009) Further comparisons of finite difference schemes for computational modelling of biosensors. Nonlinear Anal Model Control 14(4):419–433

    Article  MathSciNet  Google Scholar 

  11. Chang HC, Wu CC, Ding SJ, Lin IS, Sun IW (2005) Measurement of diffusion and partition coefficients of ferrocyanide in protein-immobilized membranes. Anal Chim Acta 532(2):209–214

    Article  Google Scholar 

  12. Durand F, Limoges B, Mano N, Mavre F, Miranda-Castro R, Saveant J (2011) Effect of substrate inhibition and cooperativity on the electrochemical responses of glucose dehydrogenase. Kinetic characterization of wild and mutant types. J Am Chem Soc 133:12801–12809

    Google Scholar 

  13. Gaidamauskaitė E, Baronas R, Kulys J (2011) Modelling synergistic action of laccase-based biosensor utilizing simultaneous substrates conversion. J Math Chem 49(8):1573–158

    Article  MathSciNet  Google Scholar 

  14. Gough DA, Leypoldt JK (1979) Membrane-covered, rotated disk electrode. Anal Chem 51(3):439–444

    Article  Google Scholar 

  15. Ivanec-Goranina R, Kulys J, Bachmatova I, Marcinkevičienė L, Meškys R (2015) Laccase-catalyzed bisphenol a oxidation in the presence of 10-propyl sulfonic acid phenoxazine. J Environ Sci 30:135–139

    Article  Google Scholar 

  16. Kulys J, Bratkovskaja I (2012) Glucose dehydrogenase based bioelectrode utilizing a synergistic scheme of substrate conversion. J Electroan 24(2):273–277

    Article  Google Scholar 

  17. Kulys J, Dapkunas Z (2007) The effectiveness of synergistic enzymatic reaction with limited mediator stability. Nonlinear Anal Model Control 12(4):495–501

    Article  Google Scholar 

  18. Kulys J, Tetianec L (2005) Synergistic substrates determination with biosensors. Biosens Bioelectron 21(1):152–158

    Article  Google Scholar 

  19. Kulys J, Dapkunas Z, Stupak R (2009) Intensification of biocatalytical processes by synergistic substrate conversion. Fungal peroxidase catalyzed n-hydroxy derivative oxidation in presence of 10-propyl sulfonic acid phenoxazine. Appl Bioch Biotech 158(2):445–456

    Article  Google Scholar 

  20. Kulys J, Vidziunaite R (1990) Amperometric enzyme electrodes with chemically amplified response. In Wise D (ed) Bioinstrumentation. Butterworths, Boston, pp 1263–1283

    Google Scholar 

  21. Kulys J, Vidziunaite R (2009) Laccase based synergistic electrocatalytical system. J Electroanal 21(20):2228–2233

    Article  Google Scholar 

  22. Kulys J, Tetianec, L, Bratkovskaja I (2010) Pyrroloquinoline quinone-dependent carbohydrate dehydrogenase: activity enhancement and the role of artificial electron acceptors. Biotechnol J 5(8):822–828

    Article  Google Scholar 

  23. Laurynenas A, Kulys J (2015) An exhaustive search approach for chemical kinetics experimental data fitting, rate constants optimization and confidence interval estimation. Nonlinear Anal Model Control 20(1):145–157

    Article  Google Scholar 

  24. Lyons MEG (2006) Modelling the transport and kinetics of electroenzymes at the electrode/solution interface. Sensors 6(12):1765–1790

    Article  Google Scholar 

  25. Lyons MEG, Murphy J, Rebouillat S (2000) Theoretical analysis of time dependent diffusion, reaction and electromigration in membranes. J Solid State Electrochem 4(8):458–472

    Article  Google Scholar 

  26. Meena A, Eswari A, Rajendran L (2010) Mathematical modelling of enzyme kinetics reaction mechanisms and analytical solutions of non-linear reaction equations. J Math Chem 48(2):179–186

    Article  MathSciNet  Google Scholar 

  27. Nernst W. (1904) Theorie der Reaktionsgeschwindigkeit in heterogenen Systemen. Z Phys Chem 47(1), 52–55

    Google Scholar 

  28. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2007) Numerical recipes: the art of scientific computing, 3rd edn. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  29. Sadana A, Sadana N (2011) Handbook of biosensors and biosensor kinetics. Elsevier, Amsterdam (2011)

    Google Scholar 

  30. Samarskii A (2001) The theory of difference schemes. Marcel Dekker, New York

    Book  Google Scholar 

  31. Scheller F, Pfeiffer D (1978) Enzymelektroden. Z Chem 18(2):50–57

    Article  Google Scholar 

  32. Scheller FW, Schubert F (1992) Biosensors. Elsevier, Amsterdam

    Google Scholar 

  33. Shleev S, Christenson A, Serezhenkov V, Burbaev D, Yaropolov A, Gorton, L, Ruzgas T (2005) Electrochemical redox transformations of T1 and T2 copper sites in native trametes hirsuta laccase at gold electrode. Biochem J 385(3):745–754

    Article  Google Scholar 

  34. Tetianec L, Kulys J (2009) Kinetics of N-substituted phenothiazines and N-substituted phenoxazines oxidation catalyzed by fungal laccases. Cent Eur J Biol 4(1):62–67

    Google Scholar 

  35. Tetianec L, Zekonyte D, Kulys J (2004) Kinetic study of reaction of PQQ-dependent glucose dehydrogenase with radical cations. Biologija 2:73–77

    Google Scholar 

  36. Tetianec L, Bratkovskaja I, Kulys J, Casaite V, Meskys R (2011) Probing reactivity of PQQ-dependent carbohydrate dehydrogenases using artificial electron acceptor. Appl Biochem Biotechnol 163(3):404–414

    Article  Google Scholar 

  37. Turner APF, Karube I, Wilson GS (eds) (1990) Biosensors: fundamentals and applications. Oxford University Press, Oxford

    Google Scholar 

  38. Šimelevišius D, Baronas R, Kulys J (2012) Modelling of amperometric biosensor used for synergistic substrates determination. Sensors 12(4):4897–4917

    Article  Google Scholar 

  39. Whitaker S (1999) The method of volume averaging. Theory and applications of transport in porous media. Kluwer, Boston

    Google Scholar 

  40. Willner I, Yan YM, Willner B, Tel-Vered R (2009) Integrated enzyme-based biofuel cells–a review. Fuel Cells 9(1):7–24

    Article  Google Scholar 

  41. Wollenberger U, Lisdat F, Scheller F (1997) Frontiers in biosensorics 2, practical applications. Birkhauser Verlag, Basel

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baronas, R., Ivanauskas, F., Kulys, J. (2021). Biosensors Utilizing Synergistic Substrates Conversion. In: Mathematical Modeling of Biosensors. Springer Series on Chemical Sensors and Biosensors, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-030-65505-1_5

Download citation

Publish with us

Policies and ethics