Skip to main content

Biosensors Response Amplification with Cyclic Substrates Conversion

  • Chapter
  • First Online:
Mathematical Modeling of Biosensors

Part of the book series: Springer Series on Chemical Sensors and Biosensors ((SSSENSORS,volume 9))

  • 382 Accesses

Abstract

The sensitivity of biosensors can be notably increased by a cyclic conversion of substrates or reaction products. In this chapter, mathematical models of different types of amperometric biosensors utilizing the cyclic conversion are modeled and analysed at transient conditions assuming an absence of outer diffusion limitations. A specific type of highly sensitive biosensors utilizing the substrate cyclic conversion in single enzyme membrane has been analytically modeled assuming the first-order reaction kinetics. The amplification of biosensor response by conjugated electrochemical and enzymatic substrate conversions is modeled by reaction–diffusion equations containing a nonlinear term related to Michaelis–Menten kinetic of the enzymatic reaction. The trigger of the response of biosensors utilizing substrate (analyte) conversion following the cyclic product conversion has been modeled and analysed computationally, too. The simulated response of the biosensors acting in two trigger schemes is compared with the response of a single enzyme biosensor utilizing Michaelis–Menten kinetics. The numerical experiments demonstrated significant gain in the biosensor sensitivity when the biosensor response was under diffusion control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aris R (1975) The mathematical theory of diffusion and reaction in permeable catalysts: vol. 1: the theory of the steady state. Oxford Studies in Physics. Oxford University Press, Oxford

    Google Scholar 

  2. Baronas R (2017) Nonlinear effects of diffusion limitations on the response and sensitivity of amperometric biosensors. Electrochim Acta 240:399–407

    Article  Google Scholar 

  3. Baronas R, Ivanauskas F, Kulys J (2003) The influence of the enzyme membrane thickness on the response of amperometric biosensors. Sensors 3(7):248–262

    Article  Google Scholar 

  4. Baronas R, Ivanauskas F, Kulys J (2004) The effect of diffusion limitations on the response of amperometric biosensors with substrate cyclic conversion. J Math Chem 35(3):199–213

    Article  MathSciNet  Google Scholar 

  5. Baronas R, Ivanauskas F, Kulys J (2004) Mathematical model of the biosensors acting in a trigger mode. Sensors 4(4):20–36

    Article  Google Scholar 

  6. Baronas R, Kulys J, Ivanauskas F (2004) Modelling amperometric enzyme electrode with substrate cyclic conversion. Biosens Bioelectron 19(8):915–922

    Article  Google Scholar 

  7. Bartlett P, Pratt K (1993) Modelling of processes in enzyme electrodes. Biosens Bioelectron 8(9–10):451462

    Google Scholar 

  8. Bartlett P, Birkin P, Wallace E (1997) Oxidation of β-nicotinamide adenine dinucleotide (NADH) at poly(aniline)-coated electrodes. J. Chem. Soc. Faraday Trans. 93(10):1951–1960

    Article  Google Scholar 

  9. Blaedel W, Boguslaski R (1978) Chemical amplification in analysis: a review. Anal Chem 50(8):1026–1032

    Article  Google Scholar 

  10. Ciana LD, Bernacca G, Bordin F, Fenu S, Garetto F (1995) Highly sensitive amperometric measurement of alkaline phosphatase activity with glucose oxidase amplification. J Electroanal Chem 382(1–2):129–135

    Article  Google Scholar 

  11. Coche-Guérente L, Desprez V, Diard JP, Labbé P (1999) Amplification of amperometric biosensor responses by electrochemical substrate recycling Part I. Theoretical treatment of the catechol-polyphenol oxidase system. J Electroanal Chem 470(1):53–60

    Article  Google Scholar 

  12. Coche-Guerente L, Labbé P, Mengeaud V (2001) Amplification of amperometric biosensor responses by electrochemical substrate recycling. 3. Theoretical and experimental study of the phenol-polyphenol oxidase system immobilized in laponite hydrogels and layer-by-layer self-assembled structures. Anal Chem 73(14):3206–3218

    Article  Google Scholar 

  13. Cornish-Bowden A (2004) Fundamentals of enzyme kinetics, 3rd edn. Portland Press, London

    Google Scholar 

  14. Devaux R, Bergel A, Comtat M (1995) Mass transfer with chemical reaction in thin-layer electrochemical reactors. AICHE J 41(8):1944–1954

    Article  Google Scholar 

  15. Diamond D (1998) Principles of chemical and biological sensors. Chemical analysis: a series of monographs on analytical chemistry and its applications. Wiley, New York

    Google Scholar 

  16. Fuhrmann B, Spohn U (1998) An enzymatic amplification flow injection analysis (FIA) system for the sensitive determination of phenol. Biosens Bioelectron 13(7–8):895–902

    Article  Google Scholar 

  17. Grieshaber D, MacKenzie R, Vörös J, Reimhult E (2008) Electrochemical biosensors - sensor principles and architectures. ensors 8(3):1400–1458

    Google Scholar 

  18. Iijima S, Kato D, Yabuki S, Niwa O, Mizutani F (2011) Enzymatically amplified electrochemical detection for lipopolysaccharide using ferrocene-attached polymyxin B and its analogue. Biosens Bioelectron 26(5):2080–2084

    Article  Google Scholar 

  19. Kulys J (1981) The development of new analytical systems based on biocatalysts. Anal Lett 14(6):377–397

    Article  Google Scholar 

  20. Kulys J, Schmid RD (1990) A sensitive enzyme electrode for phenol monitoring. Anal Lett 23(4):589–597

    Article  Google Scholar 

  21. Kulys J, Tetianec L (2006) Highly sensitive biosensor for the hydrogen peroxide determination by enzymatic triggering and amplification. Sens Actuator B Chem 113(2):755–759

    Article  Google Scholar 

  22. Kulys J, Vidziunaite R (1990) Amperometric enzyme electrodes with chemically amplified response. In: Wise D (ed) Bioinstrumentation. Butterworths, Boston, pp 1263–1283

    Google Scholar 

  23. Kulys J, Vidziunaite R (2003) Amperometric biosensors based on recombinant laccases for phenols determination. Biosens Bioelectron 18(2–3):319–325

    Article  Google Scholar 

  24. Kulys J, Sorochinskii V, Vidziunaite R (1986) Transient response of bienzyme electrodes. Biosensors 2(3):135–146

    Article  Google Scholar 

  25. Limoges B, Marchal D, Mavré F, Savéant JM (2008) Theory and practice of enzyme bioaffinity electrodes. Chemical, enzymatic, and electrochemical amplification of in situ product detection. J Am Chem Soc 130(23):7276–7285

    Article  Google Scholar 

  26. Litvinas L, Baronas R, Žilinskas A (2017) Application of two phase multi-objective optimization to design of biosensors utilizing cyclic substrate conversion. In: Paprika Z, Horák P, Váradi K, Zwierczyk PT, Vidovics-Dancs Á (eds) Proceedings, 31st European conference on modelling and simulation ECMS 2017. ECMS, Budapest, pp 469–474

    Google Scholar 

  27. Malinauskas A, Kulys J (1978) Alcohol, lactate and glutamate sensors based on oxidoreductases with regeneration of nicotinamide adenine dinucleotide. Anal Chim Acta 98(1):31–37

    Article  Google Scholar 

  28. Mizutani F, Kato D, Kurita R, Mie Y, Sato Y, Niwa O (2011) Highly-sensitive biosensors with chemically-amplified responses. Electrochem. 76(8):515–521

    Article  Google Scholar 

  29. Nistor C, Rose A, Wollenberger U, Pfeiffer D, Emnéus JA (2002) A glucose dehydrogenase biosensor as an additional signal amplification step in an enzyme-flow immunoassay. Analyst 127(8)

    Google Scholar 

  30. Popovtzer R, Natan A, Shacham-Diamand Y (2007) Mathematical model of whole cell based bio-chip: an electrochemical biosensor for water toxicity detection. J Electroanal Chem 602(1):17–23

    Article  Google Scholar 

  31. Razumas V, Kulys J, Malinauskas A (1980) Kinetic amperometric determination of hydrolase activity. Anal Chim Acta 117:387–590

    Article  Google Scholar 

  32. Scheller F, Renneberg R, Schubert F (1988) Coupled enzyme reactions in enzyme electrodes using sequence, amplification, competition, and antiinterference principles. In: Mosbach K (ed) Methods in enzymology, vol 137. Academic Press, New-York, pp 29–43

    Google Scholar 

  33. Scheller FW, Schubert F (1992) Biosensors. Elsevier Science, Amsterdam

    Google Scholar 

  34. Schubert F, Kirstein D, Schröder K, Scheller F (1985) Enzyme electrodes with substrate and co-enzyme amplification. Anal Chim Acta 169:391–396

    Article  Google Scholar 

  35. Schulmeister T (1987) Mathematical treatment of concentration profiles and anodic current of amperometric enzyme electrodes with chemically amplified response. Anal Chim Acta 201:305–310

    Article  Google Scholar 

  36. Schulmeister T, Rose J, Scheller F (1997) Mathematical modelling of exponential amplification in membrane-based enzyme sensors. Biosens Bioelectron 12(9–10):1021–1030

    Article  Google Scholar 

  37. Sorochinskii V, Kurganov B (1997) Theoretical principles of the application of potentiometric enzyme electrodes. Appl Biochem Micro 33(2):116–124

    Google Scholar 

  38. Streffer K, Kaatz H, Bauer C, Makower A, Schulmeister T, Scheller F, Peter M, Wollenberger U (1998) Application of a sensitive catechol detector for determination of tyrosinase inhibitors. Anal Chim Acta 362(1):81–90

    Article  Google Scholar 

  39. Turner APF, Karube I, Wilson GS (eds) (1990) Biosensors: fundamentals and applications. Oxford University Press, Oxford

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baronas, R., Ivanauskas, F., Kulys, J. (2021). Biosensors Response Amplification with Cyclic Substrates Conversion. In: Mathematical Modeling of Biosensors. Springer Series on Chemical Sensors and Biosensors, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-030-65505-1_4

Download citation

Publish with us

Policies and ethics