Skip to main content

Modeling Carbon Nanotube Based Biosensors

  • Chapter
  • First Online:
Mathematical Modeling of Biosensors

Part of the book series: Springer Series on Chemical Sensors and Biosensors ((SSSENSORS,volume 9))

  • 391 Accesses

Abstract

This chapter presents two-dimensional and one-dimensional-in-space mathematical models of mediated and unmediated (mediatorless) amperometric biosensors based on an enzyme-loaded carbon nanotube (CNT) layer deposited on the perforated membrane. The models are based on nonlinear reaction–diffusion equations and involve four regions: the enzyme and the CNT regions where enzymatic reactions as well as the mass transport by diffusion take place, a diffusion limiting layer where only the mass transport by diffusion takes place and a convective region where the analyte concentration is maintained constant. By changing input parameters the output results are numerically analysed with an emphasis to the influence of the geometry and the catalytic activity of the biosensors to their response and sensitivity. The mediatorless transfer of the electrons in the region of enzyme-loaded carbon nanotubes is especially investigated. The numerical simulation at transient conditions was carried out using the finite difference technique. The mathematical models and the numerical solutions were validated by experimental data . The obtained agreement between the simulation results and the experimental data was admissible at different concentrations of the substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahammad AJS, Lee JJ, Rahman MA (2009) Electrochemical sensors based on carbon nanotubes. Sensors 9(4):2289–2319

    Article  Google Scholar 

  2. Bakhvalov N, Panasenko G (1989) Homogenization: averaging processes in periodic media. Kluwer Academic Publishers, Dordrecht

    Book  MATH  Google Scholar 

  3. Balasubramanian K, Burghard M (2006) Biosensors based on carbon nanotubes. Anal Bioanal Chem 385(3):452–468

    Article  Google Scholar 

  4. Baronas R, Ivanauskas F, Survila A (2000) Simulation of electrochemical behavior of partially blocked electrodes under linear potential sweep conditions. J Math Chem 27(4):267–278

    Article  MATH  Google Scholar 

  5. Baronas R, Ivanauskas F, Kulys J (2003) The influence of the enzyme membrane thickness on the response of amperometric biosensors. Sensors 3(7):248–262

    Article  MATH  Google Scholar 

  6. Baronas R, Kulys J, Ivanauskas F (2006) Computational modeling of biosensors with perforated and selective membranes. J Math Chem 39(2):345–362

    Article  MathSciNet  MATH  Google Scholar 

  7. Baronas R, Ivanauskas F, Kulys J (2010) Mathematical modeling of biosensors. Springer, Dordrecht

    Book  MATH  Google Scholar 

  8. Baronas R, Kulys J, Petrauskas K, Razumienė J (2011) Modelling carbon nanotube based biosensor. J Math Chem 49(5):995–1010

    Article  MathSciNet  MATH  Google Scholar 

  9. Baronas R, Kulys J, Petrauskas K, Razumiene J (2012) Modelling carbon nanotubes-based mediatorless biosensor. Sensors 12(7):9146–9160

    Article  MATH  Google Scholar 

  10. Bartlett P, Whitaker R (1987) Electrochemical immobilisation of enzymes: part 1. Theory. J Electroanal Chem 224:27–35

    Article  Google Scholar 

  11. Bertram R, Pernarowski M (1998) Glucose diffusion in pancreatic islets of Langerhans. Biophys J 74:1722–1731

    Article  Google Scholar 

  12. Britz D, Strutwolf J (2016) Digital simulation in electrochemistry. Monographs in Electrochemistry, 4th edn. Springer, Cham

    Google Scholar 

  13. Britz D, Baronas R, Gaidamauskaitė E, Ivanauskas F (2009) Further comparisons of finite difference schemes for computational modelling of biosensors. Nonlinear Anal Model Control 14(4):419–433

    Article  MathSciNet  MATH  Google Scholar 

  14. Chaubey A, Malhotra BD (2002) Mediated biosensors. Biosens Bioelectron 17(6):441–456

    Article  Google Scholar 

  15. Deslous C, Gabrielli C, Keddam M, Khalil A, Rosset R, Trobollet B, Zidoune M (1997) Impedance techniques at partially blocked electrodes by scale deposition. Electrochim Acta 42(8):1219–1233

    Article  Google Scholar 

  16. Dhand C, Das M, Datta M, Malhotra B (2011) Recent advances in polyaniline based biosensors. Biosens Bioelectron 26(6):2811–2821

    Article  Google Scholar 

  17. Ferapontova EE, Shleev S, Ruzgas T, Stoica L, Christenson A, Tkac, J, Yaropolov A, Gorton L (2005) Direct electrochemistry of proteins and enzymes. Perspect Bioanalysis 1(6–7):517–598

    Article  Google Scholar 

  18. Ghindilis AL, Atanasov P, Wilkins E (1997) Enzyme-catalyzed direct electron transfer: fundamentals and analytical applications. Electroanal 9(9):661–674

    Article  Google Scholar 

  19. Gooding JJ, Chou A, Liu J, Losic D, Shapter JG, Hibbert DB (2007) The effects of the lengths and orientations of single-walled carbon nanotubes on the electrochemistry of nanotube-modified electrodes. Electrochem Commun 9(7):1677–1683

    Article  Google Scholar 

  20. Goyal A, Bairagi PK, Verma N (2020) Mathematical modelling of a non-enzymatic amperometric electrochemical biosensor for cholesterol. Electroanalysis 32:1–13

    Article  Google Scholar 

  21. Gutfreund H (1995) Kinetics for the life sciences. Cambridge University Press, Cambridge

    Book  Google Scholar 

  22. Habermüller K, Mosbach M, Schuhmann W (2000) Electron-transfer mechanisms in amperometric biosensors. Fresenius J Anal Chem 366(6):560–568

    Google Scholar 

  23. Hickson RI, Barry SI, Mercer GN, Sidhu HS (2011) Finite difference schemes for multilayer diffusion. Math Comput Model 54(1–2):210–220

    Article  MathSciNet  MATH  Google Scholar 

  24. Huang Y, Sudibya HG, Fu D, Xue R, Dong X, Li LJ, Chen P (2009) Label-free detection of ATP release from living astrocytes with high temporal resolution using carbon nanotube network. Biosens Bioelectron 24:2716–2720

    Article  Google Scholar 

  25. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  Google Scholar 

  26. Jiang HJ, Yang H, Akins D (2008) Direct electrochemistry and electrocatalysis of catalase immobilized on a SWNT-nanocomposite film. J Electroanal Chem 623:181–186

    Article  Google Scholar 

  27. Kaoui B, Lauricella M, Pontrelli G (2018) Mechanistic modelling of drug release from multi-layer capsules. Comput Biol Med 93:149–157

    Article  Google Scholar 

  28. Kulys J, Samalius A, Svirmickas G (1980) Electron exchange between the enzyme active center and organic metal. FEBS Lett 114(1):7–10

    Article  Google Scholar 

  29. Levich V (1962) Physicochemical hydrodynamics. Prentice-Hall, London

    Google Scholar 

  30. Lide DR (2004) Handbook of chemistry and physics, 85th edn. CRC Press, London

    Google Scholar 

  31. Lyons MEG (2009) Transport and kinetics at carbon nanotube-redox enzyme composite modified electrode biosensors. Int J Electrochem Sci 4(1):77–103

    Google Scholar 

  32. Lyons MEG (2009) Transport and kinetics at carbon nanotube-redox enzyme composite modified electrode biosensors part 2. Redox enzyme dispersed in nanotube mesh of finite thickness. Int J Electrochem Sci 4(9):1196–1236

    Google Scholar 

  33. Lyons M, Bannon T, Hinds G, Rebouillat S (1998) Reaction/diffusion with Michaelis-Menten kinetics in electroactive polymer films. Part 2. The transient amperometric response. Analyst 123(10):1947–1959

    Article  Google Scholar 

  34. Mell L, Maloy T (1975) A model for the amperometric enzyme electrode obtained through digital simulation and applied to the immobilized glucose oxidase system. Anal Chem 47(2):299–307

    Article  Google Scholar 

  35. Mello LD, Kubota LT (2002) Review of the use of biosensors as analytical tools in the food and drink industries. Food Chem 77(2):237–256

    Article  Google Scholar 

  36. Mitchell A, Griffits D (1980) The finite difference methods in partial differential equations. Wiley, New York

    Google Scholar 

  37. Mu M, Clarke N, Composto RJ, Winey KI (2009) Polymer diffusion exhibits a minimum with increasing single-walled carbon nanotube concentration. Macromolecules 42(18):7091–7097

    Article  Google Scholar 

  38. Petrauskas K, Baronas R (2009) Computational modelling of biosensors with an outer perforated membrane. Nonlinear Anal Model Control 14(1):85–102

    Article  MATH  Google Scholar 

  39. Petrauskas K, Baronas R (2012) One-dimensional modelling of a carbon nanotube-based biosensor. In: Troitzsch KG, Möhring M, Lotzmann U (eds) Proceedings, 26th European conference on modelling and simulation ECMS 2012. Koblenz, Germany, pp 121–127

    Google Scholar 

  40. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2007) Numerical recipes: the art of scientific computing, 3rd edn. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  41. Ratautas D, Marcinkevičienė L, Meškys R, Kulys J (2015) Mediatorless electron transfer in glucose dehydrogenase/laccase system adsorbed on carbon nanotubes. Electrochim Acta 174:940–944

    Article  Google Scholar 

  42. Ratautas D, Ramonas E, Marcinkevičienė L, Meškys R, Kulys, J (2018) Wiring gold nanoparticles and redox enzymes: a self-sufficient nanocatalyst for the direct oxidation of carbohydrates with molecular oxygen. ChemCatChem 10(5):971–974

    Article  Google Scholar 

  43. Razumienė J, Gurevičienė V, Barkauskas J, Bukauskas V, Šetkus A (2009) Novel combined template for amperometric biosensors with changeable selectivity. In: Biodevices 2009: Proceedings of the international conference on biomedical electronics and devices. SciTePress, Setúbal, pp 448–452

    Google Scholar 

  44. Razumienė J, Gurevičienė V, Voitechovic E, Barkauskas J, Bukauskas V, Šetkus A (2011) Fine structure and related properties of the assembleable carbon nanotubes based electrode for new family of biosensors with chooseable selectivity. J Nanosci Nanotechnol 11(2):9003–9011

    Article  Google Scholar 

  45. Razumiene J, Gureviciene V, Sakinyte I, Barkauskas J, Petrauskas K, Baronas R (2013) Modified SWCNTs for reagentless glucose biosensor: electrochemical and mathematical characterization. Electroanal 25(1):166–173

    Article  Google Scholar 

  46. Razumiene J, Sakinyte I, Barkauskas J, Baronas R (2015) Nano-structured carbon materials for improved biosensing applications. Appl Surf Sci 334:185–191

    Article  Google Scholar 

  47. Samarskii A (2001) The theory of difference schemes. Marcel Dekker, New York-Basel

    Book  MATH  Google Scholar 

  48. Scheller FW, Schubert F (1992) Biosensors. Elsevier Science, Amsterdam

    Google Scholar 

  49. Schulmeister T (1990) Mathematical modelling of the dynamic behaviour of amperometric enzyme electrodes. Sel Electrode Rev 12(2):203–260

    Google Scholar 

  50. Thévenot DR, Toth K, Durst RA, Wilson GS (2001) Electrochemical biosensors: recommended definitions and classification. Biosens Bioelectron 16(1–2):121–131

    Article  Google Scholar 

  51. Turner APF, Karube I, Wilson GS (eds) (1990) Biosensors: fundamentals and applications. Oxford University Press, Oxford

    Google Scholar 

  52. Velkovsky M, Snider R, Cliffel DE, Wikswo JP (2011) Modeling the measurements of cellular fluxes in microbioreactor devices using thin enzyme electrodes. J Math Chem 49(1):251–275

    Article  MathSciNet  MATH  Google Scholar 

  53. Wang S, Zhang Q, Wang R, Yoona S (2003) A novel multi-walled carbon nanotube-based biosensor for glucose detection. Biochem Biophys Res Commun 311(3):572–576

    Article  Google Scholar 

  54. Whitaker S (1999) The method of volume averaging. Theory and Applications of Transport in Porous Media. Kluwer, Boston

    Google Scholar 

  55. Wittmaack BK, HorairaBanna A, Volkov A, Zhigilei LV (2018) Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source. Carbon 130(8):69–86

    Article  Google Scholar 

  56. Yang N, Chen X, Ren T, Zhang P, Yang D (2015) Carbon nanotube based biosensors. Sens Actuator B Chem 207(A):690–715

    Article  Google Scholar 

  57. Yankov D (2004) Diffusion of glucose and maltose in polyacrylamide gel. Enzyme Microb Technol 34(6):603–610

    Article  Google Scholar 

  58. Zhang W, Li G (2004) Third-generation biosensors based on the direct electron transfer of proteins. Anal Sci 20(4):603–609

    Article  Google Scholar 

  59. Zhou Y, Fang Y, Ramasamy R (2019) Non-covalent functionalization of carbon nanotubes for electrochemical biosensor development. Sensors 19(2):392

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baronas, R., Ivanauskas, F., Kulys, J. (2021). Modeling Carbon Nanotube Based Biosensors. In: Mathematical Modeling of Biosensors. Springer Series on Chemical Sensors and Biosensors, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-030-65505-1_11

Download citation

Publish with us

Policies and ethics