Skip to main content

Detecting Word Based DGA Domains Using Ensemble Models

  • Conference paper
  • First Online:
Cryptology and Network Security (CANS 2020)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12579))

Included in the following conference series:

Abstract

Domain Generation Algorithm (DGA) is a popular technique used by many malware developers in recent times. Nowadays, DGA is an evasive technique used by many of the Advanced Persistent Threat (APT) groups and Botnets to bypass host and network-level detection mechanisms. Legacy malware developers used to hard code the IP address of control and command server in malware payload. But, this led to identifying malicious IP address by reverse engineering the malware payload. Drawbacks in this hardcoding IP mechanism led to the idea of character-based Domain Generation Algorithms, where attackers generate a list of domain names using traditional cryptographic principles of pseudo-random number generators (PRNGs). Recent advances in malware research, machine learning address this problem to a large extent. Lately, malware developers came up with a new variant of DGA called word-list based DGA. In this approach, the malware uses a set of words from the dictionary to construct meaningful substrings that resembles real domain names. In this paper, we propose a new method for detecting Word-list based DGA domain names using ensemble approaches with 15 features (both lexical and network-level). Added to this, we generated syntactic data using CTGAN (GAN-based data synthesizer that can generate synthetic data) to measure the robustness of our model. In our experiment, C5.0 stands out as the best with prediction accuracy of 0.9503 and out of 30000 synthetically generated malicious domains names, 1351 classified as benign.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, X., et al.: Towards an understanding of anti-virtualization and anti-debugging behavior in modern malware. In: IEEE International Conference on Dependable Systems and Networks with FTCS and DCC (DSN), pp. 177–186. IEEE (2008)

    Google Scholar 

  2. Sai Charan, P.V., Gireesh Kumar, T., Mohan Anand, P.: Advance persistent threat detection using long short term memory (LSTM) neural networks. In: Somani, A.K., Ramakrishna, S., Chaudhary, A., Choudhary, C., Agarwal, B. (eds.) ICETCE 2019. CCIS, vol. 985, pp. 45–54. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-8300-7_5

    Chapter  Google Scholar 

  3. Sood, A.K., Zeadally, S.: A taxonomy of domain-generation algorithms. IEEE Secur. Privacy 14(4), 46–53 (2016)

    Article  Google Scholar 

  4. Kumar, A., Gupta, M., Kumar, G., Handa, A., Kumar, N., Shukla, S.K.: A review: malware analysis work at IIT Kanpur. In: Shukla, S.K., Agrawal, M. (eds.) Cyber Security in India. ID, vol. 4, pp. 39–48. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-1675-7_5

    Chapter  Google Scholar 

  5. Schiavoni, S., Maggi, F., Cavallaro, L., Zanero, S.: Phoenix: DGA-based botnet tracking and intelligence. In: Dietrich, S. (ed.) DIMVA 2014. LNCS, vol. 8550, pp. 192–211. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08509-8_11

    Chapter  Google Scholar 

  6. Royal, P.: Analysis of the kraken botnet. Damballa, 9 April 2008

    Google Scholar 

  7. Shin, S., Gu, G.: Conficker and beyond: a large-scale empirical study. In: Proceedings of the 26th Annual Computer Security Applications Conference, pp. 151–160 (2010)

    Google Scholar 

  8. Mohaisen, A., Alrawi, O.: Unveiling zeus: automated classification of malware samples. In: Proceedings of the 22nd International Conference on World Wide Web, pp. 829–832 (2013)

    Google Scholar 

  9. Brahara, B., Syamsuar, D., Kunang, Y.N.: Analysis of malware DNS attack on the network using domain name system indicators. J. Inf. Syst. Inform. 2(1), 131–153 (2020)

    Google Scholar 

  10. Anand, P.M., Kumar, T.G., Charan, P.S.: An Ensemble approach for algorithmically generated domain name detection using statistical and lexical analysis. Procedia Comput. Sci. 171, 1129–1136 (2020)

    Article  Google Scholar 

  11. Berman, D.S., et al.: DGA CapsNet: 1D application of capsule networks to DGA detection. Information 10(5), 157 (2019)

    Article  Google Scholar 

  12. Matrosov, A., Rodionov, E.: Defeating x64: modern trends of kernel-mode rootkits (2011). https://www.eset.com/fileadmin/eset/US/resources/docs/white-papers/white-papers-defeating-x-64-modern-trends-of-kernel-mode-rootkits.pdf. Accessed 21 Oct 2011

  13. Matsnu-DGA. https://www.securityweek.com/new-variant-matsnu-trojan-uses-configurable-dg. Accessed 15 June 2020

  14. Fu, Y.: Using botnet technologies to counteract network traffic analysis (2017)

    Google Scholar 

  15. Yadav, S., Reddy, A.K.K., Reddy, A.N., Ranjan, S.: Detecting algorithmically generated malicious domain names. In: Proceedings of the 10th ACM SIGCOMM Conference on Internet Measurement, pp. 48–61 (2010)

    Google Scholar 

  16. Da Luz, P.M.: Botnet detection using passive DNS. Radboud University, Nijmegen, The Netherlands (2014)

    Google Scholar 

  17. Selvi, J., Rodríguez, R.J., Soria-Olivas, E.: Detection of algorithmically generated malicious domain names using masked N-grams. Expert Syst. Appl. 124, 156–163 (2019)

    Google Scholar 

  18. Plohmann, D., Yakdan, K., Klatt, M., Bader, J., Gerhards-Padilla, E.: A comprehensive measurement study of domain generating malware. In: 25th USENIX Security Symposium (USENIX Security 16), pp. 263–278 (2016)

    Google Scholar 

  19. Curtin, R.R., Gardner, A.B., Grzonkowski, S., Kleymenov, A., Mosquera, A.: Detecting DGA domains with recurrent neural networks and side information. In: Proceedings of the 14th International Conference on Availability, Reliability and Security, pp. 1–10 (2019)

    Google Scholar 

  20. Yang, L., et al.: Detecting word-based algorithmically generated domains using semantic analysis. Symmetry 11(2), 176 (2019)

    Article  Google Scholar 

  21. Woodbridge, J., Anderson, H.S., Ahuja, A., Grant, D.: Predicting domain generation algorithms with long short-term memory networks. arXiv preprint arXiv:1611.00791 (2016)

  22. Choi, H., Lee, H., Kim, H.: BotGAD: detecting botnets by capturing group activities in network traffic. In: Proceedings of the Fourth International ICST Conference on COMmunication System softWAre and middlewaRE, pp. 1–8 (2009)

    Google Scholar 

  23. Abbink, J., Doerr, C.: Popularity-based detection of domain generation algorithms. In: Proceedings of the 12th International Conference on Availability, Reliability and Security, pp. 1–8 (2017)

    Google Scholar 

  24. Word Ninja. https://github.com/keredson/wordninja. Accessed 15 June 2020

  25. whois 0.9.6. https://pypi.org/project/whois. Accessed 15 June 2020

  26. Mixed Naive Bayes. https://pypi.org/project/mixed-naive-bayes. Accessed 15 June 2020

  27. Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. Chemometr. Intell. Lab. Syst. 2(1–3), 37–52 (1987)

    Article  Google Scholar 

  28. De la Porte, J., Herbst, B.M., Hereman, W., Van Der Walt, S.J.: An introduction to diffusion maps. In: Proceedings of the 19th Symposium of the Pattern Recognition Association of South Africa (PRASA 2008), Cape Town, South Africa, pp. 15–25 (2008)

    Google Scholar 

  29. Zheng, T., Salganik, M.J., Gelman, A.: How many people do you know in prison? Using overdispersion in count data to estimate social structure in networks. J. Am. Stat. Assoc. 101(474), 409–423 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. Yan, K., Zhang, D.: Feature selection and analysis on correlated gas sensor data with recursive feature elimination. Sens. Actuat. B: Chem. 212, 353–363 (2015)

    Article  Google Scholar 

  31. Diffusion Map for Manifold Learning. https://www.kdnuggets.com/2020/03/diffusion-map-manifold-learning-theory-implementation.html. Accessed 15 June 2020

  32. Xu, L., Skoularidou, M., Cuesta-Infante, A., Veeramachaneni, K.: Modeling tabular data using conditional gan. In: Advances in Neural Information Processing Systems, pp. 7335–7345 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Sai Charan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Charan, P.V.S., Shukla, S.K., Anand, P.M. (2020). Detecting Word Based DGA Domains Using Ensemble Models. In: Krenn, S., Shulman, H., Vaudenay, S. (eds) Cryptology and Network Security. CANS 2020. Lecture Notes in Computer Science(), vol 12579. Springer, Cham. https://doi.org/10.1007/978-3-030-65411-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65411-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65410-8

  • Online ISBN: 978-3-030-65411-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics