Skip to main content

Digitization in Management of Temporomandibular Disorders

  • Chapter
  • First Online:
Digitization in Dentistry
  • 1014 Accesses

Abstract

Temporomandibular disorders (TMD) are common disorders, with a multifactorial origin that affect the muscular, soft tissue and osseous components of the temporomandibular joint (TMJ). Patients may present with pain, joint sounds, limited or asymmetric mandibular movements, and different forms of disabilities which may severely affect the quality of life. The diagnosis of TMD is a complicated process which involves history taking, clinical examination, and imaging, in addition to biobehavioral and psychosocial assessments. As in other fields of dentistry, digitization has become an important aspect in the field of TMD diagnosis. The use of cone beam computed tomography (CBCT) has led to dramatic changes in the process of TMD diagnosis and altered the primary diagnosis in different studies.

The use of modern digital occlusion analysis technologies to quantify occlusal forces might help in finding an answer to the question of whether dental occlusion is a contributing factor for TMD or not. The CBCT-based real-time jaw motion tracking systems and the real-time magnetic resonance imaging (MRI) of the TMJ have enhanced the measuring of the 3D in vivo kinematics of the mandible for the hard tissue and soft tissue respectively which would potentially enhance the diagnostic process of TMD. Artificial intelligence (AI) is expected to improve the performance and productivity of medical practitioners by eliminating subjective interpretations and allowing for smart clinical decisions. AI applications in the field of TMD have achieved favorable results through the use of different neural networks. Digitization in the treatment of TMD involves the use of computer-assisted TMJ arthroscopy as a method of refinement to the technique. In addition, the use of customized design total TMJ prosthesis using 3D printing and CAD/CAM technologies has allowed the production of sophisticated customized TMJ prosthesis for a better treatment outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. National Institute of Dental and Craniofacial Research. https://www.nidcr.nih.gov/research/data-statistics/facial-pain/ (accessed 25/11/2019).

  2. Di Paolo C, Costanzo GD, Panti F, Rampello A, Falisi G, Pilloni A, Cascone P, Iannetti G. Epidemiological analysis on 2375 patients with TMJ disorders: basic statistical aspects. Ann Stomatol. 2013;4(1):161–9.

    Google Scholar 

  3. Helkimo M. Studies on function and dysfunction of the masticatory system. II. Index for anamnestic and clinical dysfunction and occlusal state. Sven Tandlak Tidskr. 1974;67:101–21.

    PubMed  Google Scholar 

  4. Oleson J, for The International Headache Society. Classification and diagnostic criteria for headache disorders, cranial neuralgias and facial pain. Cephalalgia. 1988;8(suppl 7):1–97.

    Google Scholar 

  5. McNeill C, editor. Temporomandibular disorders: guidelines for classification, assessment, and management. 2nd ed. Chicago: Quintessence Publishing; 1993. p. 39–60.

    Google Scholar 

  6. Dworkin SF, LeResche L. Research diagnostic criteria for temporomandibular disorders: review criteria, examinations and specifications, critique. J Craniomandib Disord. 1992;6:301–55.

    PubMed  Google Scholar 

  7. Schiffman E, Ohrbach R, Truelove E, Look J, Anderson G, Goulet JP, et al. Diagnostic criteria for temporomandibular disorders (DC/TMD) for clinical and research applications: recommendations of the international RDC/TMD consortium network and orofacial pain special interest group. J Oral Facial Pain Headache. 2014;28(1):6–27.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Talaat WM, Adel OI, Al Bayatti S. Prevalence of temporomandibular disorders discovered incidentally during routine dental examination using the research diagnostic criteria for temporomandibular disorders. Oral Surg Oral Med Oral Pathol Oral Radiol. 2018;125(3):250–9.

    Article  PubMed  Google Scholar 

  9. Gonçalves DA, Speciali JG, Jales LC, Camparis CM, Bigal ME. Temporomandibular symptoms, migraine and chronic daily headaches in the population. Neurology. 2009;73:645–6.

    Article  PubMed  Google Scholar 

  10. Leeuw R. Dor Orofacial: Guia de Avaliação, Diagnóstico e Tratamento. 4th ed. Quintessence: São Paulo, Brazil; 2010.

    Google Scholar 

  11. Nebbe B, Major PW. Prevalence of TMJ disc displacement in a pre-orthodontic adolescent sample. Angle Orthod. 2000;70:454–63.

    PubMed  Google Scholar 

  12. Simmons HC 3rd. Why are dentists not trained to screen and diagnose temporomandibular disorders in dental school? Cranio. 2016;34:76–8.

    Article  PubMed  Google Scholar 

  13. Brooks SL, Brand JW, Gibbs SJ, Hollender L, Lurie AG, Omnell KA, Westesson PL, White SC. Imaging of the temporomandibular joint: a position paper of the American Academy of Oral and Maxillofacial Radiology. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1997;83:609–18.

    Article  PubMed  Google Scholar 

  14. Ahmad M, Hollender L, Anderson Q, Kartha K, Ohrbach R, Truelove EL, John MT, Schiffman EL. Research diagnostic criteria for temporomandibular disorders (RDC / TMD): development of image analysis criteria and examiner reliability for image analysis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;107:844–60.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Flygare L, Rohlin M, Akerman S. Microscopy and tomography of erosive changes in the temporomandibular joint. An autopsy study. Acta Odontol Scand. 1995;53:297–303.

    Article  PubMed  Google Scholar 

  16. Zarb GA, Carlsson GE. Temporomandibular disorders: osteoarthritis. J Orofac Pain. 1999;13(295):306.

    Google Scholar 

  17. Barghan S, Tetradis S, Mallya SM. Application of cone beam computed tomography for assessment of the temporomandibular joints. Aust Dent J. 2012;57:109–18.

    Article  PubMed  Google Scholar 

  18. Honda K, Larheim TA, Maruhashi K, Matsumoto K, Iwai K. Osseous abnormalities of the mandibular condyle: diagnostic reliability of cone beam computed tomography compared with helical computed tomography based on an autopsy material. Dentomaxillofac Radiol. 2006;35:152–7.

    Article  PubMed  Google Scholar 

  19. Talaat W, Al Bayatti S, Al Kawas S. CBCT analysis of bony changes associated with temporomandibular disorders. Cranio. 2016;34:88–94.

    Article  PubMed  Google Scholar 

  20. Su N, Liu Y, Yang X, Luo Z, Shi Z. Correlation between bony changes measured with cone beam computed tomography and clinical dysfunction index in patients with temporomandibular joint osteoarthritis. J Craniomaxillofac Surg. 2014;42(7):1402–7.

    Article  PubMed  Google Scholar 

  21. de Boer EW, Dijkstra PU, Stegenga B, de Bont LG, Spijkervet FK. Value of cone-beam computed tomography in the process of diagnosis and management of disorders of the temporomandibular joint. Br J Oral Maxillofac Surg. 2014;52(3):241–6.

    Article  PubMed  Google Scholar 

  22. Pullinger AG, Seligman DA, Gornbein JA. A multiple regression analysis of risk and relative odds of temporomandibular disorders as a function of common occlusal features. J Dent Res. 1993;72(6):968–79.

    Article  PubMed  Google Scholar 

  23. Wang C, Yin X. Occlusal risk factors associated with temporomandibular disorders in young adults with normal occlusions. Oral Surg Oral Med Oral Pathol Oral Radiol. 2012;114(4):419–23.

    Article  PubMed  Google Scholar 

  24. Kerstein RB, Radke J. Masseter and temporalis excursive hyperactivity decreased by measured anterior guidance development. Cranio. 2012;30(4):243–54.

    Article  PubMed  Google Scholar 

  25. Haralur SB. Digital evaluation of functional occlusion parameters and their association with temporomandibular disorders. J Clin Diagn Res. 2013;7(8):1772–5.

    PubMed  PubMed Central  Google Scholar 

  26. Williamson EH, Lundquist DO. Anterior guidance: its effect on electromyographic activity of the temporal and masseter muscles. J Prosthet Dent. 1983;49(6):816–23.

    Article  PubMed  Google Scholar 

  27. Ciavarella D, Parziale V, Mastrovincenzo M, Palazzo A, Sabatucci A, Suriano MM, Bossù M, Cazzolla AP, Lo Muzio L, Chimenti C. Condylar position indicator and T-scan system II in clinical evaluation of temporomandibular intracapsular disease. J Craniomaxillofac Surg. 2012;40(5):449–55.

    Article  PubMed  Google Scholar 

  28. Gibbs CH, Messerman T, Reswick JB, Derda HJ. Functional movements of the mandible. J Prosthet Dent. 1971;26:604–20.

    Article  PubMed  Google Scholar 

  29. Airoldi RL, Gallo LM, Palla S. Precision of the jaw tracking system JAWS-3D. J Orofac Pain. 1994;8:155–64.

    PubMed  Google Scholar 

  30. Ferrario VF, Sforza C, Miani A, Serrao G. Kinesiographic three dimensional evaluation of mandibular border movements: a statistical study in a normal young nonpatient group. J Prosthet Dent. 1992;68:672–6.

    Article  PubMed  Google Scholar 

  31. Naeije M, Van der Weijden JJ, Megens CC. Okas-3D: optoelectronic jaw movement recording system with six degrees of freedom. Med Biol Eng Comput. 1995;33:683–8.

    Article  PubMed  Google Scholar 

  32. Chen C-C, Chen Y-J, Chen S-C, Lin H-S, Lu T-W. Evaluation of soft tissue artifacts when using anatomical and technical markers to measure mandibular motion. J Dental Sci. 2011;6:95–101.

    Article  Google Scholar 

  33. Chen CC, Lin CC, Chen YJ, Hong SW, Lu TW. A method for measuring three-dimensional mandibular kinematics in vivo using single-plane fluoroscopy. Dentomaxillofac Radiol. 2013;42(1):95958184.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Behr M, Held P, Leibrock A, Fellner C, Handel G. Diagnostic potential of pseudo-dynamic MRI (CINE mode) for evaluation of internal derangement of the TMJ. Eur J Radiol. 1996;23:212–5.

    Article  PubMed  Google Scholar 

  35. Frahm J, Schätz S, Untenberger M, Zhang S, Voit D, Merboldt KD, Sohns JM, Lotz J, Uecker M. On the temporal fidelity of nonlinear inverse reconstructions for real-time MRI—the motion challenge. Open Med Imaging J. 2014;8:1–5.

    Article  Google Scholar 

  36. Krohn S, Joseph AA, Voit D, Michaelis T, Merboldt KD, Buergers R, Frahm J. Multi-slice real-time MRI of temporomandibular joint dynamics. Dentomaxillofac Radiol. 2018;20:20180162.

    Google Scholar 

  37. Zhang S, Block KT, Frahm J. Magnetic resonance imaging in real time: advances using radial FLASH. J Magn Reson Imaging. 2010;31:101–9.

    Article  PubMed  Google Scholar 

  38. Wang S, Li H, Li J, Zhang Y, Zou B. Automatic analysis of lateral cephalograms based on multiresolution decision tree regression voting. J Healthc Eng. 2018;2018:1–15.

    Google Scholar 

  39. Jiang F, Jiang Y, Zhi H, Dong Y, Li H, Ma S, et al. Artificial intelligence in healthcare: past, present and future. Stroke Vasc Neurol. 2017;2:230–43.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Fazal MI, Patel ME, Tye J, Gupta Y. The past, present and future role of artificial intelligence in imaging. Eur J Radiol. 2018;105:246–50.

    Article  PubMed  Google Scholar 

  41. Dayhoff JE, DeLeo JM. Artificial neural networks: opening the black box. Cancer. 2001;91:1615–35.

    Article  PubMed  Google Scholar 

  42. Speight PM, Elliott AE, Jullien JA, Downer MC, Zakzrewska JM. The use of artificial intelligence to identify people at risk of oral cancer and precancer. Br Dent J. 1995;179:382–7.

    Article  PubMed  Google Scholar 

  43. Brickley MR, Shepherd JP, Armstrong RA. Neural networks: a new technique for development of decision support systems in dentistry. J Dent. 1998;26:305–9.

    Article  PubMed  Google Scholar 

  44. Kann BH, Aneja S, Loganadane GV, Kelly JR, Smith SM, et al. Pretreatment identification of head and neck cancer nodal metastasis and extranodal extension using deep learning neural networks. Sci Rep. 2018;8:14036.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Radke JC, Ketcham R, Glassman B, Kull R. Artificial neural network learns to differentiate normal TMJs and nonreducing displaced disks after training on incisor-point chewing movements. Cranio. 2003;21(4):259–64.

    Article  PubMed  Google Scholar 

  46. Shoukri B, Prieto JC, Ruellas A, Yatabe M, Sugai J, Styner M, et al. Minimally invasive approach for diagnosing TMJ osteoarthritis. J Dent Res. 2019;98(10):1103–11.

    Article  PubMed  PubMed Central  Google Scholar 

  47. de Dumast P, Mirabel C, Cevidanes L, Ruellas A, Yatabe M, Ioshida M, et al. A web-based system for neural network based classification in temporomandibular joint osteoarthritis. Comput Med Imaging Graph. 2018;67:45–54.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Moloney F, Howard JA. Internal derangements of the temporomandibular joint. III. Anterior repositioning splint therapy. Aust Dent J. 1986;31(1):30–9.

    Article  PubMed  Google Scholar 

  49. Randolph CS, Greene CS, Moretti R, et al. Conservative management of temporomandibular disorders: a post-treatment comparison between patients from a university clinic and from private practice. Am J Orthod Dentofac Orthop. 1990;98(1):77–82.

    Article  Google Scholar 

  50. Bjørnland T, Larheim TA. Synovectomy and diskectomy of the temporomandibular joint in patients with chronic arthritic disease compared with diskectomies in patients with internal derangement. A 3-year follow-up study. Eur J Oral Sci. 1995;103:2–7.

    Article  PubMed  Google Scholar 

  51. Bjørnland T, Larheim TA, Haanaes HR. Surgical treatment of temporomandibular joints in patients with chronic arthritic disease: preoperative findings and one-year follow-up. Cranio. 1992;10:205–10.

    Article  PubMed  Google Scholar 

  52. Onishi M. Arthroscopy of the temporomandibular joint. Kokubyo Gakkai Zasshi. 1975;42:207–13.

    Article  PubMed  Google Scholar 

  53. Holmlund A, Hellsing G. Arthroscopy of the temporomandibular joint: an autopsy study. Int J Oral Maxillofac Surg. 1985;14:169–75.

    Google Scholar 

  54. Sanders B. Arthroscopic surgery of the temporomandibular joint: treatment of internal derangement with persistent closed lock. Oral Surg Oral Med Oral Pathol. 1986;62:361–72.

    Article  PubMed  Google Scholar 

  55. González-García R. The current role and the future of minimally invasive temporomandibular joint surgery. Oral Maxillofac Surg Clin North Am. 2015;27(1):69–84.

    Article  PubMed  Google Scholar 

  56. Murakami K, Iizuka T, Matsuki M, et al. Recapturing the persistent anteriorly displaced disk by mandibular manipulation after pumping and hydraulic pressure to the upper joint cavity of the temporomandibular joint. Cranio. 1987;5:17–24.

    Article  PubMed  Google Scholar 

  57. Nitzan DW, Franklin Dolwick MF, Martinez GA. Temporomandibular joint arthrocentesis: a simplified treatment for severe, limited mouth opening. J Oral Maxillofac Surg. 1991;49:1163–7.

    Article  PubMed  Google Scholar 

  58. Rehman KU, Hall T. Single needle arthrocentesis. Br J Oral Maxillofac Surg. 2009;47:403–4.

    Article  PubMed  Google Scholar 

  59. Guarda-Nardini L, Manfredini D, Ferronato G. Arthrocentesis of the temporomandibular joint: a proposal for a single-needle technique. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008;106:483–6.

    Article  PubMed  Google Scholar 

  60. Talaat W, Ghoneim M, Elsholkamy M. Single-needle arthrocentesis (Shepard cannula) vs. double-needle arthrocentesis for treating disc displacement without reduction. Cranio. 2016;34(5):296–302.

    Article  PubMed  Google Scholar 

  61. Talaat WM, McGraw TA, Klitzman B. Relationship between the canthal-tragus distance and the puncture point in temporomandibular joint arthroscopy. Int J Oral Maxillofac Surg. 2010;39:57–60.

    Article  PubMed  Google Scholar 

  62. Wagner A, Undt G, Watzinger F, Wanschitz F, Schicho K, Yerit K, et al. Principles of computer-assisted arthroscopy of the temporomandibular joint with optoelectronic tracking technology. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2001;92(1):30–7.

    Article  PubMed  Google Scholar 

  63. He Y, Huang T, Zhang Y, An J, He L. Application of a computer-assisted surgical navigation system in temporomandibular joint ankylosis surgery: a retrospective study. Int J Oral Maxillofac Surg. 2017;46(2):189–97.

    Article  PubMed  Google Scholar 

  64. Krause M, Dörfler HM, Kruber D, Hümpfner-Hierl H, Hierl T. Template-based temporomandibular joint puncturing and access in minimally invasive TMJ surgery (MITMJS)—a technical note and first clinical results. Head Face Med. 2019;15(1):10.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Westermark A. Total reconstruction of the temporomandibular joint. Up to 8 years of follow-up of patients treated with Biomet (®) total joint prosthesis. Int J Oral Maxillofac Surg. 2010;39(10):951–5.

    Article  PubMed  Google Scholar 

  66. Wolford LM, Mercuri LG, Schneiderman ED, Movahed R, Allen W. Twenty-year follow-up study on a patient-fitted temporomandibular joint prosthesis: the Techmedica/TMJ concepts device. J Oral Maxillofac Surg. 2015;73(5):952–60.

    Article  PubMed  Google Scholar 

  67. Zheng J, Chen X, Jiang W, Zhang SY, Chen MJ, Yang C. An innovative total temporomandibular joint prosthesis with customized design and 3D printing additive fabrication: a prospective clinical study. J Transl Med. 2019;17:4.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Ye ZX, Yang C, Chen MJ, Huang D, Abdelrehem A. Digital resection and reconstruction of TMJ synovial chondrosarcoma involving the skull base: report of a case. Int J Clin Exp Med. 2015;8(7):11589–193.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wael M. Talaat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Talaat, W.M. (2021). Digitization in Management of Temporomandibular Disorders. In: Jain, P., Gupta, M. (eds) Digitization in Dentistry. Springer, Cham. https://doi.org/10.1007/978-3-030-65169-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65169-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65168-8

  • Online ISBN: 978-3-030-65169-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics