Skip to main content

Digitalization in Endodontics

  • Chapter
  • First Online:
Digitization in Dentistry

Abstract

With the great growing of digitalization in dentistry, digital technologies have become very common and fundamental in Endodontics. This chapter describes some of these technologies and their applications in endodontics. Apart from the apex locators and Endodontic electric motors, the usage of microscopes, digital radiography, CBCT, ultrasound imaging, optical coherence tomography, dynamic navigation, and 3D micro-guided access for endodontic surgery are described in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Naoum HJ, Chandler NP, RM L. Conventional versus storage phosphor-plate digital images to visualize the root canal system contrasted with a radiopaque medium. J Endod. 2003;29(5):349–52.

    Google Scholar 

  2. Wenzel A, Gröndahl HJ. Direct digital radiography in the dental office. Int Dent J. 1995;45(1):27–34.

    Google Scholar 

  3. Deepak B, Subash T, Narmatha V, Anamika T, Snehil T, Nandini DJ. Imaging techniques in endodontics: an overview. J Clin Imaging Sci. 2012;2

    Google Scholar 

  4. Gröndahl HG, Huumonen S. Radiographic manifestations of periapical inflammatory lesions: how new radiological techniques may improve endodontic diagnosis and treatment planning. Endod Topics. 2004;8(1):55–67.

    Google Scholar 

  5. Patel S, Dawood A, Whaites E, Pitt Ford TJ. New dimensions in endodontic imaging: part 1. Conventional and alternative radiographic systems. Int Endod J. 2009;42(6):447–62.

    Google Scholar 

  6. Sonoda M, Takano M, Miyahara J, Kato HJR. Computed radiography utilizing scanning laser stimulated luminescence. Radiology. 1983;148(3):833–8.

    Google Scholar 

  7. Tyndall DA, Ludlow JB, Platin E, Nair MJOS. A comparison of Kodak Ektaspeed plus film and the Siemens Sidexis digital imaging system for caries detection using receiver operating characteristic analysis. Oral Med Oral Pathol Oral Radiol Endod. 1998;85(1):113–8.

    Article  Google Scholar 

  8. Van Der Stelt PF. Filmless imaging: the uses of digital radiography in dental practice. 2005;136(10):1379–87.

    Google Scholar 

  9. Walther J. Optical coherence tomography in the oral cavity. Technical University of Dresden. SPIE Photonics West 2018, San Francisco.

    Google Scholar 

  10. Imai K, Shimada Y, Sadr A, Sumi Y, Tagami J. Noninvasive cross-sectional visualization of enamel cracks by optical coherence tomography in vitro. J Endod. 2012;38:1269–74.

    Article  Google Scholar 

  11. Bueno MR, Estrela C, Azevedo BC, Diogenes AJ. Development of a new cone-beam computed tomography software for endodontic diagnosis. Braz Dent J. 2018;29(6):517–29.

    Google Scholar 

  12. Patel S, Dawood A, Ford TP, Whaites EJ. The potential applications of cone beam computed tomography in the management of endodontic problems. Int Endod J. 2007;40(10):818–30.

    Google Scholar 

  13. Nair MK, Nair UP. Digital and advanced imaging in endodontics: a review. J Endod. 2007;33(1):1–6.

    Google Scholar 

  14. Cotton TP, Geisler TM, Holden DT, Schwartz SA, Schindler WG. Endodontic applications of cone-beam volumetric tomography. J Endod. 2007;33(9):1121–32.

    Google Scholar 

  15. Bueno MR, Estrela C, De Figueiredo JAP, Azevedo BCJ. Map-reading strategy to diagnose root perforations near metallic intracanal posts by using cone beam computed tomography. J Endod. 2011;37(1):85–90.

    Google Scholar 

  16. Venskutonis T, Plotino G, Juodzbalys G, Mickevičienė LJ. The importance of cone-beam computed tomography in the management of endodontic problems: a review of the literature. J Endod. 2014;40(12):1895–901.

    Google Scholar 

  17. Aminoshariae A, Kulild JC, AJ S. Cone-beam computed tomography compared with intraoral radiographic lesions in endodontic outcome studies: a systematic review. J Endod. 2018;44(11):1626–31.

    Google Scholar 

  18. Rosen E, Taschieri S, Del Fabbro M, Beitlitum I, Tsesis IJ. The diagnostic efficacy of cone-beam computed tomography in endodontics: a systematic review and analysis by a hierarchical model of efficacy. J Endod. 2015;41(7):1008–14.

    Google Scholar 

  19. Long H, Zhou Y, Ye N, Liao L, Jian F, Wang Y, et al. Diagnostic accuracy of CBCT for tooth fractures: a meta-analysis. J Dent. 2014;42(3):240–8.

    Google Scholar 

  20. Mamede-Neto I, Bandeca MC, Tonetto MR, Nogueira AL, Borba AM, Pereira TM, et al. The role of the cone-beam computed tomography as an incremental tool in endodontic diagnoses. J Int Oral Health. 2016;8(10):978.

    Google Scholar 

  21. Rajendran N, Sundaresan B. Efficacy of ultrasound and color power Doppler as a monitoring tool in the healing of endodontic periapical lesions. J Endod. 2007;33:181–6.

    Article  Google Scholar 

  22. Maity I, Kumari A, Shukla AK, Usha H, Naveen D. Monitoring of healing by ultrasound with color power doppler after root canal treatment of maxillary anterior teeth with periapical lesions. J Conserv Dent. 2011;14:252–7.

    Google Scholar 

  23. Khambete N, Kumar R. Ultrasound in differential diagnosis of periapical radiolucencies: a radiohistopathological study. J Conserv Dent. 2015;18:39–43.

    Article  Google Scholar 

  24. Idiyatullin D, Corum C, Moeller S, Prasad HS, Garwood M, Nixdorf DR. Dental magnetic resonance imaging: making the invisible visible. J Endod. 2011;37:745–52.

    Article  Google Scholar 

  25. Lin J, Chandler N, Purton D, Monteith BJ. Appropriate electrode placement site for electric pulp testing first molar teeth. J Endod. 2007;33(11):1296–8.

    Google Scholar 

  26. Bender I. Reversible and irreversible painful pulpitides: diagnosis and treatment. J Aust Soc Endod. 2000;26(1):10–4.

    Google Scholar 

  27. Ehrmann EJADJ. Pulp testers and pulp testing with particular reference to the use of dry ice. Aust Dent J. 1977;22(4):272–9.

    Google Scholar 

  28. Närhi M, Virtanen A, Kuhta J, Huopaniemi T. Electrical stimulation of teeth with a pulp tester in the cat. Eur J Oral Sci. 1979;87(1):32–8.

    Google Scholar 

  29. Penna K, Sadoff R. Simplified approach to use of electrical pulp tester. N Y State Dent J. 1995;61(1):30–1.

    Google Scholar 

  30. Kolbinson DA, Teplitsky PE. Electric pulp testing with examination gloves. Oral Surg Oral Med Oral Pathol. 1988;65(1):122–6.

    Google Scholar 

  31. Guerra JA, Skribner J, Lin LM. Electric pulp tester and apex locator barrier technique. J Endod. 1993;19(10):532–4.

    Google Scholar 

  32. Kleier D, Sexton J, RJJodr A. Electronic and clinical comparison of pulp testers. J Dent Res. 1982;61(12):1413–5.

    Google Scholar 

  33. Johnsen DJ. Innervation of teeth: qualitative, quantitative, and developmental assessment. J Dent Res. 1985;64:555–63.

    Google Scholar 

  34. Mumford J. Thermal and electrical stimulation of teeth in the diagnosis of pulpal and periapical disease: SAGE Publications; 1967.

    Google Scholar 

  35. Woolley LH, Woodworth J, Dobbs JLJT. A preliminary evaluation of the effects of electrical pulp testers on dogs with artificial pacemakers. J Am Dent Assoc. 1974;89(5):1099–101.

    Google Scholar 

  36. Miller CS, Leonelli FM, Latham EJOS. Selective interference with pacemaker activity by electrical dental devices. Oral Med Oral Pathol Oral Radiol Endod. 1998;85(1):33–6.

    Article  Google Scholar 

  37. Wilson BL, Broberg C, Baumgartner JC, Harris C, JJJoe K. Safety of electronic apex locators and pulp testers in patients with implanted cardiac pacemakers or cardioverter/defibrillators. J Endod. J Endod. 2006;32(9):847–52.

    Google Scholar 

  38. Sailus J, Trowbridge H, Greco M, Emling R, editors. Sensitivity of teeth subjected to orthodontic forces. Journal of dental Research; 1987.: Amer Assoc Dental Research 1619 Duke ST, Alexandria, VA 22314.

    Google Scholar 

  39. Waikakul A, Kasetsuwan J, Punwutikorn JJOS. Response of autotransplanted teeth to electric pulp testing. Oral Med Oral Pathol Oral Radiol Endod. 2002;94(2):249–55.

    Article  Google Scholar 

  40. Pileggi R, Dumsha T, Myslinksi NJDT. The reliability of electrical pulp test after concussion injury. Dental Traumatol. 1996;12(1):16–9.

    Google Scholar 

  41. Peters DD, Baumgartner JC, LJ L. Adult pulpal diagnosis. I. Evaluation of the positive and negative responses to cold and electrical pulp tests. J Endod. 1994;20(10):506–11.

    Google Scholar 

  42. Rowe A, Ford TP. The assessment of pulpal vitality. Int Endod J. 1990;23(2):77–83.

    Google Scholar 

  43. Millard HJ. Electric pulp testers. Council on dental materials and devices. J Am Dental Assoc. 1973;86(4):872–3.

    Google Scholar 

  44. Lin J, Chandler N. Electric pulp testing: a review. Int Endod J. 2008;41(5):365–74.

    Google Scholar 

  45. Jacobson JJOS. Probe placement during electric pulp-testing procedures. Oral Med Oral Pathol. 1984;58(2):242–7.

    Article  Google Scholar 

  46. Bender I, Landau MA, Fonsecca S, Trowbridge HO. The optimum placement-site of the electrode in electric pulp testing of the 12 anterior teeth. 1989;118(3):305–10.

    Google Scholar 

  47. Lilja JJAOS. Sensory differences between crown and root dentin in human teeth. Acta Odontol Scand. 1980;38(5):285–91.

    Google Scholar 

  48. Cooley RL, Robison SFJOS. Variables associated with electric pulp testing. Oral Surg Oral Med Oral Pathol. 1980;50(1):66–73.

    Article  Google Scholar 

  49. Myers JW. Demonstration of a possible source of error with an electric pulp tester. J Endod. 1998;24(3):199–201.

    Google Scholar 

  50. Simon S, Machtou P, Adams N, Tomson P, Lumley PJD. Apical limit and working length in endodontics. 2009;36(3):146–53.

    Google Scholar 

  51. Franco V, Tosco E. The endodontic line: a clinical approach. Societa’Italiana di Endodonzi. 2013;27(1):2–12.

    Article  Google Scholar 

  52. Nekoofar M, Ghandi M, Hayes S, Dummer P. The fundamental operating principles of electronic root canal length measurement devices. Int Endod J. 2006;39(8):595–609.

    Google Scholar 

  53. Ebrahim AK, Wadachi R, Suda HJ. Electronic apex locators—a review. J Med Dent Sci. 2007;54(3):125–36.

    Google Scholar 

  54. Khadse A, Shenoi P, Kokane V, Khode R, Sonarkar S. Endodontics. Electronic apex locators—an overview. Ind J Conserv Endod. 2017;2(2):35–40.

    Google Scholar 

  55. Sonal Soi SM, Vinayak V, Kaur P. Electronic apex locators. J Dent Sci Oral Rehabil. 2013:24–7.

    Google Scholar 

  56. Steffen H, Splieth C, KJIej B. Comparison of measurements obtained with hand files or the canal leader attached to electronic apex locators: an in vitro study. Int Endod J. 1999;32(2):103–7.

    Google Scholar 

  57. Sunada IJ. New method for measuring the length of the root canal. J Dent Res. 1962;41(2):375–87.

    Google Scholar 

  58. Gordon M, Chandler N. Electronic apex locators. Int Endod J. 2004;37(7):425–37.

    Google Scholar 

  59. Fouad AF, Krell KV. An in vitro comparison of five root canal length measuring instruments. J Endod. 1989;15(12):573–7.

    Google Scholar 

  60. Dimitrov S, Roshkev DJ. Sixth generation adaptive apex locator. J Endod. 2009;15(2009):75–8.

    Google Scholar 

  61. Tınaz AC, Sevimli LS, Görgül G, Türköz EG. The effects of sodium hypochloride concentrations on the accuracy of an apex locating device. Int Dent J. 2002;28(3):160–2.

    Google Scholar 

  62. Stock CJR. Current status of the use of ultrasound in endodontics. Int Dent J. 1991;41:175–82.

    PubMed  Google Scholar 

  63. Martin H, Cunningham W. Endosonic endodontics: the ultrasonic synergistic system. Int Dent J. 1984;34:198–203.

    PubMed  Google Scholar 

  64. Martin H, Cunningham W. Endosonics: the ultrasonic synergistic system of endodontics. Endod Dent Traumatol. 1985;1:201–6.

    Article  Google Scholar 

  65. Mohammadi Z, Abbott PV. The properties and applications of chlorhexidine in endodontics. Int Endod J. 2009;42(4):288–302.

    Article  Google Scholar 

  66. Van der Sluis L, Versluis M, Wu M, Wesselink P. Passive ultrasonic irrigation of the root canal: a review of the literature. Int Endod J. 2007;40(6):415–26.

    Google Scholar 

  67. Klyn SL, Kirkpatrick TC, Rutledge RE. In vitro comparisons of debris removal of the EndoActivator TM system, the F file TM, ultrasonic irrigation, and NaOCl irrigation alone after handrotary instrumentation in human mandibular molars. J Endod. 2010;36(8):1367–71.

    Article  Google Scholar 

  68. Mozo S, Llena C, Forner L. Review of ultrasonic irrigation in endodontics: increasing action of irrigating solutions. Med Oral Patol Oral Cir Bucal. 2012;17(3):e512–6.

    Article  Google Scholar 

  69. Pitt WG. Removal of oral biofilm by sonic phenomena. Am J Dent. 2005;18:345–52.

    PubMed  Google Scholar 

  70. Ruddle CJ. Endodontic disinfection: tsunami irrigation. Endod Prac. 2008;11(1):7–15.

    Google Scholar 

  71. Neuhaus KW, Liebi M, Stauffacher S, Eick S, Lussi A. Antibacterial efficacy of a new sonic irrigation device for root canal disinfection. J Endod. 2016;42(12):1799–803.

    Article  Google Scholar 

  72. Lumley PJ, Walmsley AD, Laird WR. Streaming patterns produced around endosonic files. Int Endod J. 1991;24(6):290–7.

    Article  Google Scholar 

  73. Townsend C, Maki J. An in vitro comparison of new irrigation and agitation techniques to ultrasonic agitation in removing bacteria from a simulated root canal. J Endod. 2009;35:1040–3.

    Article  Google Scholar 

  74. Rodig T, Bozkurt M, Konietschke F, Hülsmann M. Comparison of the vibringe system with syringe and passive ultrasonic irrigation in removing debris from simulated root canal irregularities. J Endod. 2010;36:1410–3.

    Article  Google Scholar 

  75. Sumi Y, Hattori H, Hayashi K, Ueda M. Ultrasonic root-end preparation: clinical and radiographic evaluation of results. J Oral Maxillofac Surg. 1996;54:590–3.

    Article  Google Scholar 

  76. Mehlhaff DS, Marshall JG, Baumgartner JC. Comparison of ultrasonic and highspeed- bur root-end preparations using bilaterally matched teeth. J Endod. 1997;23:448–52.

    Article  Google Scholar 

  77. Ahangari Z, Samiee M, Yolmeh MA, Eslami G. Antimicrobial activity of three root canal irrigants on enterococcus faecalis: an in vitro study. Iran Endod J. 2008;3(2):33–7.

    PubMed  PubMed Central  Google Scholar 

  78. Gulabivala K, Ng YL, Gilbertson M, Eames I. The fluid mechanics of root canal irrigation. Physiol Meas. 2010;31(12):R49–84.

    Article  Google Scholar 

  79. Clark MS, Silverstone LM, Lindenmuth J, Hicks MJ, Averbach RE, Kleier DJ, et al. An evaluation of the clinical analgesia/anesthesia efficacy on acute pain using the high frequency neural modulator in various dental settings. Oral Surg Oral Med Oral Pathol. 1987;63:501–5.

    Article  Google Scholar 

  80. Gangarosa LP, Park NH, Fong BC, Scott DF, Hill JM. Conductivity of drugs used for iontophoresis. J Pharm Sci. 1978;67:1439–43.

    Article  Google Scholar 

  81. Tharian EB, Tandon S. Iontophoresis. A novel drug administration for extraction of deciduous teeth. A clinical evaluation. Indian J Dent Res. 1994;5:97–100.

    PubMed  Google Scholar 

  82. Hochman MN. Single-tooth anesthesia: pressure sensing technology provides innovative advancement in the field of dental local anesthesia. Compend Contin Educ Dent. 2007;28:186–93.

    PubMed  Google Scholar 

  83. Revathi M, Rao C, Lakshminarayanan LJE. Revolution in endodontic instruments—a review. J Endodont. 2001;13:43–50.

    Google Scholar 

  84. Sanghvi Z, Mistry KJ. Design features of rotary instruments in endodontics. J Ahmedabad Dent Coll Hosp. 2011;2(1):6–11.

    Google Scholar 

  85. Yared G, Bou Dagher F, Machtou PJIEJ. Failure of ProFile instruments used with high and low torque motors. Int Endod J. 2001;34(6):471–5.

    Google Scholar 

  86. Pessoa OF, Silva JM, Gavini G. Cyclic fatigue resistance of rotary NiTi instruments after simulated clinical use in curved root canals. Braz Den J. 2013;24(2):117–20.

    Google Scholar 

  87. Kawakami DAS, Candeiro GTM, Akisue E, Caldeira CL, Gavini GJB. Effect of different torques in cyclic fatigue resistance of K3 rotary instruments. Braz J Oral Sci. 2015;14(2):122–5.

    Google Scholar 

  88. Yared G. In vitro study of the torsional properties of new and used ProFile nickel titanium rotary files. J Endod. 2004;30(6):410–2.

    Google Scholar 

  89. Gambarini G. Cyclic fatigue of nickel-titanium rotary instruments after clinical use with low- and high-torque endodontic motors. J Endod. 2001;27(12):772–4.

    Google Scholar 

  90. Berutti E, Negro AR, Lendini M, Pasqualini D. Influence of manual preflaring and torque on the failure rate of ProTaper rotary instruments. J Endod. 2004;30(4):228–30.

    Google Scholar 

  91. Prichard J, editor Rotation or reciprocation: a contemporary look at NiTi instruments? Br Dent J; 2012.: Nature Publishing Group.

    Google Scholar 

  92. Ng YL, Mann V, Rahbaran S, Lewsey J, Gulabivala K. Outcome of primary root canal treatment: systematic review of the literature—part 2. Influence of clinical factors. Int Endod J. 2008;41:6–31.

    Article  Google Scholar 

  93. Liang YH, Li G, Wesselink PR, Wu MK. Endodontic outcome predictors identified with periapical radiographs and cone-beam computed tomography scans. J Endod. 2011;37:326–31.

    Article  Google Scholar 

  94. Carr GB, Murgel CAJDC. The use of the operating microscope in endodontics. Dent Clin. 2010;54(2):191–214.

    Google Scholar 

  95. Microscopic dentistry a practical guide, Ziess.

    Google Scholar 

  96. Kim SJ. Principles of endodontic microsurgery. Dent Clin North Am. 1997;41(3):481–97.

    Google Scholar 

  97. Görduysus MÖ, Görduysus M, Friedman S. Operating microscope improves negotiation of second mesiobuccal canals in maxillary molars. J Endod. 2001;27(11):683–6.

    Google Scholar 

  98. Buhrley LJ, Barrows MJ, BeGole EA, Wenckus CS. Effect of magnification on locating the MB2 canal in maxillary molars. J Endod. 2002;28(4):324–7.

    Google Scholar 

  99. Yoshioka T, Kobayashi C, Suda H. Detection rate of root canal orifices with a microscope. J Endod. 2002;28(6):452–3.

    Google Scholar 

  100. Selden HS. The role of a dental operating microscope in improved nonsurgical treatment of “calcified” canals. Oral Surg Oral Med Oral Pathol. 1989;68(1):93–8.

    Article  Google Scholar 

  101. Al-Habboubi TM, Al-Wasi KA. Maxillary first molars with six canals confirmed with the aid of cone-beam computed tomography. 2016;6(3):136.

    Google Scholar 

  102. Sarakinakis M. Dental assisting notes- dental assistants chair-side pocket guide: F. A. Davis; 2015.

    Google Scholar 

  103. Elsevier. E S. Preparation of the root canal system. Harty’s endodontics in clinical practice. Edinburgh: Churchill Livingstone: Elsevier; 2017. p. 113–28.

    Google Scholar 

  104. Clark D, Khademi JJDC. Modern molar endodontic access and directed dentin conservation. Dent Clin. 2010;54(2):249–73.

    Google Scholar 

  105. Selden HS. The role of a dental operating microscope in improved nonsurgical treatment of “calcified” canals. Oral Surg Oral Med Oral Pathol. 1989;68(1):93–8.

    Article  Google Scholar 

  106. Amir FA, Gutmann JL, Witherspoon E. Calcific metamorphosis: a challenge in endodontic diagnosis and treatment. Quintessence Int. 2001;32(6)

    Google Scholar 

  107. Cvek M, Granath L, Lundberg MJAOS. Failures and healing in endodontically treated non-vital anterior teeth with posttraumatically reduced pulpal lumen. Acta Odontol Scand. 1982;40(4):223–8.

    Google Scholar 

  108. Krastl G, Zehnder MS, Connert T, Weiger R, Kühl S. Guided endodontics: a novel treatment approach for teeth with pulp canal calcification and apical pathology. Dent Traumatol. 2016;32(3):240–6. https://doi.org/10.1111/edt.12235.

    Article  PubMed  Google Scholar 

  109. D’haese J, Ackhurst J, Wismeijer D, De Bruyn H, Tahmaseb AJP. Current state of the art of computer-guided implant surgery. Periodontol 2000. 2017;73(1):121–33.

    Google Scholar 

  110. Block MS, Emery RW, Cullum DR, Sheikh AJ. Implant placement is more accurate using dynamic navigation. J Oral Maxillofac Surg. 2017;75(7):1377–86.

    Google Scholar 

  111. Zehnder MS, Connert T, Weiger R, Krastl G, Kühl S. Guided endodontics: accuracy of a novel method for guided access cavity preparation and root canal location. Int Endod J. 2016;49(10):966–72. https://doi.org/10.1111/iej.12544.

    Article  PubMed  Google Scholar 

  112. Nahmias Y. Dynamic endodontic navigation: a case report.

    Google Scholar 

  113. Block MS, Emery RW. Static or dynamic navigation for implant placement—choosing the method of guidance. J Oral Maxillofac Surg. 2016;74(2):269–77.

    Google Scholar 

  114. Buchanan LS. Dynamic CT-Guided Endodontic Access Procedures. Dent Edu Lab; 2018.

    Google Scholar 

  115. Buchgreitz J, Buchgreitz M, Mortensen D, Bjørndal L. Guided access cavity preparation using cone-beam computed tomography and optical surface scans–an ex vivo study. Int Endod J. 2016;49(8):790–5.

    Google Scholar 

  116. Giacomino C, Ray J, Wealleans J. Targeted endodontic microsurgery: a novel approach to anatomically challenging scenarios using 3-dimensional-printed guides and trephine burs-a report of 3 cases. J Endod. 2018;44:671–7.

    Article  Google Scholar 

  117. Mohamed N, Nahmias Y, Serota KJOH. The cortical window: part two computer guided endodontic surgery (CGES). OralHealthGroup. 2018.

    Google Scholar 

  118. Gambarini G, Galli M, Stefanelli LV, Di Nardo D, Morese A, Seracchiani M, et al. Endodontic microsurgery using dynamic navigation system: a case report. J Endod. 2019;45(11):1397–402. e6

    Google Scholar 

  119. Ray J. Targeted endodontic microsurgery- narrowing the gap between novice and adept. Endodontic surgery. American Association of Endodontists 2019.

    Google Scholar 

  120. Song T, Yang C, Dianat O, Azimi EJHTL. Endodontic guided treatment using augmented reality on a head-mounted display system. Healthc Technol Lett. 2018;5(5):201–7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saaid Al Shehadat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Al Shehadat, S., Jain, P. (2021). Digitalization in Endodontics. In: Jain, P., Gupta, M. (eds) Digitization in Dentistry. Springer, Cham. https://doi.org/10.1007/978-3-030-65169-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65169-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65168-8

  • Online ISBN: 978-3-030-65169-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics