Skip to main content

Digital Diagnosis and Treatment Planning

  • Chapter
  • First Online:
Digitization in Dentistry

Abstract

The last few years have changed the face of dentistry. With digital technology, more can be achieved in less time. From diagnostic imaging through 3D scanning/designing and evaluation, in all fields of dentistry treatment can be planned with more refined results. This chapter will explain the digital advancements in dentistry that help in the examination and diagnostic process. It will also review their advantages, limitations, and future prospects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Srilatha A, Doshi D, Kulkarni S, Reddy MP, Bharathi V. Advanced diagnostic aids in dentalcaries—a review. J Global Oral Health. 2019;2(2):118–27.

    Google Scholar 

  2. Divya J, Deepak R, Medhavi S, et al. Contemporary diagnostic aids in endodontics. J Evol Med Dent Sci. 2014;3(6):1526–35.

    Article  Google Scholar 

  3. Bennett TA. Emerging technologies for diagnosis of dental caries: the road so far. J Appl Phys. 2009;105

    Google Scholar 

  4. Yang J, Dutra V. Utility of radiology, laser fluorescence, and transillumination. Dent Cline North Am. 2005;49(4):739–52.

    Article  Google Scholar 

  5. Ashley FP, Blinkhorn SA, Davies MR. Occlusal caries diagnosis: an in vitro histological validation of the electronic caries monitor (ECM) and other methods. J Dent. 1998;26:83–8.

    Article  PubMed  Google Scholar 

  6. Pretty AI. Caries detection and diagnosis: novel technologies. J Dent. 2006;34(10):727–39.

    Article  PubMed  Google Scholar 

  7. Lussi A, Imwinkelried S, Pitts N, Longbottom C, et al. Performance and reproducibility of a laser fluorescence system for detection of occlusal caries in vitro. Caries Res. 1999;33(4):261–6.

    Article  PubMed  Google Scholar 

  8. Novaes FT, Moriyama MC, De Benedetto MS, et al. Performance of fluorescence-based methods for detecting and quantifying smooth-surface caries lesions in primary teeth: an in vitro study. Int J Paediatr Dent. 2015;26:13.

    Article  PubMed  Google Scholar 

  9. Theocharopoulou A, Lagerweij MD, van Strijp AJ. Use of the ICDAS system and two fluorescence-based intraoral devices for examination of occlusal surfaces. Eur J Paediatr Dent. 2015;16(1):51–5.

    PubMed  Google Scholar 

  10. Shivakumar KM, Prasad S, Chandu GN. International caries detection and assessment system: a new paradigm in detection of dental caries. J Conserv Dent. 2009;12(1):10–6.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Pretty AI. Caries detection and diagnosis. In: Limeback H, editor. Comprehensive preventive dentistry. Oxford: Wiley-Blackwell; 2013. p. 25–42.

    Chapter  Google Scholar 

  12. Hall A, Girkin JM. A review of potential new diagnostic modalities for carious lesions. J Dent Res. 2004;83:89–94.

    Article  Google Scholar 

  13. Bab I, Feuerstein O, Gazit D. Ultrasonic detector of proximal caries. Caries Res. 1997;31:322. (Abst)

    Google Scholar 

  14. Matalon S, Feuerstein O, Kaffe I. Diagnosis of approximal caries: bite-wing radiology versus the ultrasound caries detector. An in vitro study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2003;95:626–31.

    Article  PubMed  Google Scholar 

  15. Tagtekin DA, Öztürk F, Lagerweij O, Hayran O, et al. Thickness measurement of worn molar cusps by ultrasound. Caries Res. 2005;39:139–43.

    Article  Google Scholar 

  16. Kimura Y, Wilder-Smith P, Matsumoto K. Lasers in endodontics: a review. Int Endod J. 2000;33:173–85.

    Article  PubMed  Google Scholar 

  17. Soo-ampon S, Vongsavan N, Soo-ampon M, Chuckpaiwong S, et al. The sources of laser Doppler blood-flow signals recorded from human teeth. Arch Oral Biol. 2003;48:353–60.

    Article  PubMed  Google Scholar 

  18. Gazelius, Lindh-Stromberg U, Pettersson H, Oberg PA. Laser Doppler technique—a future diagnostic tool for tooth pulp vitality. Int Endod J. 1993;26(1):8–9.

    Article  PubMed  Google Scholar 

  19. Eugene C, Paul AV. Dental pulp testing: a review. Int J Dent. 2009:1–12.

    Google Scholar 

  20. Roeykens H, Van Maele G, De Moor R, Martens L. Reliability of laser Doppler flowmetry in a 2-probe assessment of pulpal blood flow. Oral Surg Oral Med Oral Pathol Oral Radiol Endodont. 1990;87(6):742–8.

    Article  Google Scholar 

  21. Ingolfsson AR, Tronstad L, Hersh EV, Riva CE. Effect of probe design on the suitability of laser Doppler flowmetry in vitality testing of human teeth. Endodont Dent Traumatol. 1993;9(2):65–70.

    Article  Google Scholar 

  22. Ashraf EA, Donald YC. Dental pulp neurophysiology: part2. Current diagnostic tests to assess pulp vitality. JCDA. 2009;75(2):139–43.

    Google Scholar 

  23. Dakshita V, Ashish S. Pulse oximetry and laser Doppler flowmetry for diagnosing of pulp vitality. J Interdiscipl Dent. 2011;1(1):14–21.

    Article  Google Scholar 

  24. Sasano T, Nakajima I, Shoji N, et al. Possible application of transmitted laser light I for the assessment of human pulpal vitality. Endod Dent Traumatol. 1997;13(2):88–91.

    Article  PubMed  Google Scholar 

  25. Nissan R, Trope M, Zhang C-D, Chance B. Dual wavelength spectrophotometry as a diagnostic test of the pulp chamber contents. Oral Surg Oral Med Oral Pathol. 1992;74(4):508–14.

    Article  PubMed  Google Scholar 

  26. Nivesh R, Pradeep S. Recent diagnostic aids in endodontics—a review. IJPCR. 2016;8(8):1159–62.

    Google Scholar 

  27. Ramachandra SS, Dhoom M, et al. Periodontal probing systems: a review of available equipment. Res Gate. 2009;3(3):1–7.

    Google Scholar 

  28. Lynch JE, Hinders MK, McCombs GB. Clinical comparison of an ultrasonographic periodontal probe to manual and controlled force probing. Measurement. 2006;39:429–39.

    Article  Google Scholar 

  29. Elashiry M, Meghil MM, et al. From manual probing to digital 3-D imaging to endoscopic capillaroscopy: recent advances in periodontal disease diagnosis. J Periodontal Res. 2019;54:1–9.

    Article  PubMed  Google Scholar 

  30. Jeffcoat MK. Diagnosing periodontal disease: new tools to solve an old problem. J Am Dent Assoc. 1991;122(1):54–9.

    Article  PubMed  Google Scholar 

  31. Kozlowski Z, Miklaszewska B, Konopka T, et al. Using halitometer to verify symptoms of halitosis. Adv Clin Exp Med. 2007;16(3):411–6.

    Google Scholar 

  32. Falcao DP, Miranda PC, Almeida TFG, et al. Assessment of the accuracy of portable monitors for halitosis evaluation in subjects without malodor complaint. Are they reliable for clinical practice? J Appl Oral Sci. 2017;25(5):559–65.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zhou H, McCombs GB, Darby ML, et al. Sulphur by-product: the relationship between volatile Sulphur compounds and dental plaque-induced gingivitis. J Contemp Dent Pract. 2004;5(2):27–39.

    Article  PubMed  Google Scholar 

  34. McNamara TF, Alexander JF. M lee “the role of microorganisms in the production of oral malodor”. Oral Surg OraMed Oral Pathol. 1972;34(1):41–8.

    Article  Google Scholar 

  35. Kung RT, Ochs B, Goodson JM. Temperature as a periodontal diagnostic. J Clin Periodontol. 1990;17(8):557–63.

    Article  PubMed  Google Scholar 

  36. Kung RTV, Goodson JM. Diagnostic temperature probe. Accessed Oct 18, 2008.

    Google Scholar 

  37. Tanya P, Bozhkova. The T SCAN system in evaluating occlusal contacts. Folia Med. 2016;58(2):122–30.

    Article  Google Scholar 

  38. Garg AK. Analyzing dental occlusion for implants: Tek Scan’s T Scan III. Dent Implantol Updat. 2007;18(9):65–70. 28

    Google Scholar 

  39. Sultana MH, Yamada K, Hanada K. Changes in occlusal force and occlusal contact area after active orthodontic treatment: a pilot study using pressure-sensitive sheets. J Oral Rehabil. 2002;29(5):484–91.

    Article  PubMed  Google Scholar 

  40. Pyakural U, Long H, et al. Mechanism, accuracy and application of Tscan system in dentistry-review. JNDA. 2013;13(1):52–6.

    Google Scholar 

  41. Szentpetery A. Computer aided dynamic correction of digitized occlusal surfaces. J Gnathol. 1997;16:53–60.

    Google Scholar 

  42. Ruge S, Kordass B. 3D-VAS- initial results from computerized visualization of dynamic occlusion. Int J Comput Dent. 2008;11:9–16.

    PubMed  Google Scholar 

  43. Kinuta S, Wakabayashi K, Sohmura T, Kojima T, et al. Measurement of masticatory movement by a new jaw tracking system using a home digital camcorder. Dent Mater J. 2005;24:661–6.

    Article  PubMed  Google Scholar 

  44. Minakuchi H, Clark GT, Haberman PB, Maekawa K, Kuboki T. Sensitivity and specificity of a miniature bruxism detection device. Oral Surg Oral Med Oral Pathol Oral Radiol Endodontol. 2005;99:440–1.

    Article  Google Scholar 

  45. Vijaykumari B, Siddavaram SJ, et al. Joint vibration analysis a functional tool in diagnosis of temporomandibular disorders-a case report. Int J Contemp Med Surg Radiol. 2019;(2):B128–32.

    Google Scholar 

  46. Kondrat W, Sierpinska T, Radhke J. Assessment of the temporomandibular joint function in young adults without complaints from masticatory system. Int J Med Sci. 2018;15(2):161–9.

    Article  PubMed  PubMed Central  Google Scholar 

  47. SUkhpal K, Riponjot S, Sandeep K. Digital revolution in orthodontic diagnosis. Ann Geriatr Educ Med Sci. 2017;2:38–40.

    Google Scholar 

  48. Graber TM. Orthodontics principles and practice. 3rd ed. Philadelphia, PA: W. B. Saunders; 1972.

    Google Scholar 

  49. Broadbent BH. A new X-ray technique and its application to orthodontia. Angle Orthod. 1931;1:45–66.

    Google Scholar 

  50. Alexandru O, Cosmin S, Emilia O et al. The digital decade in interdisciplinary orthodontics. ISSN:1792–5908.

    Google Scholar 

  51. Emilia T, Budi K, Carla AE 3D scanning, imaging, and printing in orthodontics. Issues in contemporary orthodontics, Farid Bourzgui, IntechOpen, 2015 doi: https://doi.org/10.5772/60010.

  52. Vanessa P, Ljose G, Rosa C. Digital diagnosis records in orthodontics.An overview. Med Oral Patol Oral Cir Buccal. 2006;11:E88–93.

    Google Scholar 

  53. James M, Martin F. The cutting edge. J Clin Orthodont. 2003;37:101–3.

    Google Scholar 

  54. Kumar A, Ghafoor H. Rapid prototyping: a future in orthodontics. J Orthod Res. 2016;4(1):1–7.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, M. (2021). Digital Diagnosis and Treatment Planning. In: Jain, P., Gupta, M. (eds) Digitization in Dentistry. Springer, Cham. https://doi.org/10.1007/978-3-030-65169-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65169-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65168-8

  • Online ISBN: 978-3-030-65169-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics