Skip to main content

Intravenous Curcumin Mitigates Atherosclerosis Progression in Cholesterol-Fed Rabbits

  • Chapter
  • First Online:
Pharmacological Properties of Plant-Derived Natural Products and Implications for Human Health

Abstract

Orally administered curcumin has been found to have a moderate therapeutic effect on dyslipidemia and atherosclerosis. The present study was conducted to determine lipid-modulating and antiatherosclerosis effects of injectable curcumin in the rabbit model of atherosclerosis induced by a high cholesterol diet (HCD). New Zealand white male rabbits were fed on a normal chow enriched with 0.5% (w/w) cholesterol for 8 weeks. Atherosclerotic rabbits were randomly divided into three groups, including a control group receiving intravenous (IV) injection of the saline buffer, two treatment groups receiving IV administration of the injectable curcumin at low (1 mg/kg/week) and high (10 mg/kg/week) over 4 weeks. Plasma lipid parameters, including low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), triglycerides (TG), and total cholesterol (TC) were measured. Aortic arch atherosclerotic lesions were assessed using hematoxylin and eosin (H&E) staining. The low dose of curcumin significantly reduced plasma levels of TC, LDL-C, and TG by −14.19 ± 5.19%, −6.22 ± 1.77%, and − 29.84 ± 10.14%, respectively, and increased HDL-C by 14.05 ± 6.39% (p < 0.05). High dose of curcumin exerted greater lipid-modifying effects, in which plasma levels of TC, LDL-C, and TG were significantly (p < 0.05) decreased by −56.59 ± 10.22%, −44.36 ± 3.24%, and − 25.92 ± 5.57%, respectively, and HDL-C was significantly increased by 36.24 ± 12.5%. H&E staining showed that the lesion severity was lowered significantly in the high dose (p = 0.03) but not significantly (p > 0.05) in the low-dose curcumin groups, compared to control rabbits. The median (interquartile range) of plaque grades in the high dose and low dose, and control groups was found to be 2 [2-3], 3 [2-3], and 4 [3-4], respectively. The injectable curcumin could significantly improve dyslipidemia and alleviate atherosclerotic lesion in HCD-induced atherosclerotic rabbits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Musunuru K (2010) Atherogenic dyslipidemia: cardiovascular risk and dietary intervention. Lipids 45(10):907–914

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Assmann G (2006) Dyslipidaemia and global cardiovascular risk: clinical issues. European Heart Journal Supplements 8(suppl_F):F40–F46

    Google Scholar 

  3. Srikanth S, Deedwania P (2016) Management of dyslipidemia in patients with hypertension, diabetes, and metabolic syndrome. Curr Hypertens Rep 18(10):76. https://doi.org/10.1007/s11906-016-0683-0

    Article  CAS  PubMed  Google Scholar 

  4. Gaw A (2003) HDL-C and triglyceride levels: relationship to coronary heart disease and treatment with statins. Cardiovasc Drugs Ther 17(1):53–62

    CAS  PubMed  Google Scholar 

  5. Padala S, Thompson PD (2012) Statins as a possible cause of inflammatory and necrotizing myopathies. Atherosclerosis 222(1):15–21

    CAS  PubMed  Google Scholar 

  6. Chalasani N (2005) Statins and hepatotoxicity: focus on patients with fatty liver. Hepatology 41(4):690–695

    CAS  PubMed  Google Scholar 

  7. Goel A, Kunnumakkara AB, Aggarwal BB (2008) Curcumin as “Curecumin”: from kitchen to clinic. Biochem Pharmacol 75(4):787–809

    CAS  PubMed  Google Scholar 

  8. Abdollahi E, Momtazi AA, Johnston TP, Sahebkar A (2018) Therapeutic effects of curcumin in inflammatory and immune-mediated diseases: a nature-made jack-of-all-trades? J Cell Physiol 233(2):830–848

    CAS  PubMed  Google Scholar 

  9. Ghandadi M, Sahebkar A (2017) Curcumin: An effective inhibitor of interleukin-6. Curr Pharm Des 23(6):921–931

    Google Scholar 

  10. Mollazadeh H, Cicero AFG, Blesso CN, Pirro M, Majeed M, Sahebkar A (2019) Immune modulation by curcumin: the role of interleukin-10. Crit Rev Food Sci Nutr 59(1):89–101

    CAS  PubMed  Google Scholar 

  11. Ye M-X, Li Y, Yin H, Zhang J (2012) Curcumin: updated molecular mechanisms and intervention targets in human lung cancer. Int J Mol Sci 13(3):3959–3978

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Darvesh AS, Aggarwal BB, Bishayee A (2012) Curcumin and liver cancer: a review. Curr Pharm Biotechnol 13(1):218–228

    CAS  PubMed  Google Scholar 

  13. Bachmeier BE, Killian P, Pfeffer U, Nerlich AG (2010) Novel aspects for the application of curcumin in chemoprevention of various cancers. Front Biosci (Schol Ed) 2:697–717

    Google Scholar 

  14. Shehzad A, Khan S, Shehzad O, Lee Y (2010) Curcumin therapeutic promises and bioavailability in colorectal cancer. Drugs Today (Barc) 46(7):523–532

    CAS  Google Scholar 

  15. Teiten MH, Gaascht F, Eifes S, Dicato M, Diederich M (2010) Chemopreventive potential of curcumin in prostate cancer. Genes Nutr 5(1):61–74

    CAS  PubMed  Google Scholar 

  16. Odot J, Albert P, Carlier A, Tarpin M, Devy J, Madoulet C (2004) In vitro and in vivo anti-tumoral effect of curcumin against melanoma cells. Int J Cancer 111(3):381–387

    CAS  PubMed  Google Scholar 

  17. Momtazi-Borojeni AA, Mosafer J, Nikfar B, Ekhlasi-Hundrieser M, Chaichian S, Mehdizadehkashi A et al (2018) Curcumin in advancing treatment for gynecological cancers with developed drug-and radiotherapy-associated resistance. Rev Physiol Biochem Pharmacol 176:107–129

    Google Scholar 

  18. Iranshahi M, Sahebkar A, Takasaki M, Konoshima T, Tokuda H (2009) Cancer chemopreventive activity of the prenylated coumarin, umbelliprenin, in vivo. Eur J Cancer Prev 18(5):412–415

    CAS  PubMed  Google Scholar 

  19. Teymouri M, Pirro M, Johnston TP, Sahebkar A (2017) Curcumin as a multifaceted compound against human papilloma virus infection and cervical cancers: a review of chemistry, cellular, molecular, and preclinical features. Biofactors 43(3):331–346

    Google Scholar 

  20. Hamaguchi T, Ono K, Yamada M (2010) Review: curcumin and Alzheimer’s disease. CNS Neurosci Ther 16(5):285–297

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Mythri RB, Bharath MM (2012) Curcumin: a potential neuroprotective agent in Parkinson’s disease. Curr Pharm Des 18(1):91–99

    CAS  PubMed  Google Scholar 

  22. Taylor RA, Leonard MC (2011) Curcumin for inflammatory bowel disease: a review of human studies. Altern Med Rev 16(2):152–156

    PubMed  Google Scholar 

  23. Momtazi-Borojeni AA, Haftcheshmeh SM, Esmaeili SA, Johnston TP, Abdollahi E, Sahebkar A (2018) Curcumin: a natural modulator of immune cells in systemic lupus erythematosus. Autoimmun Rev 17(2):125–135

    CAS  PubMed  Google Scholar 

  24. Panahi Y, Khalili N, Sahebi E, Namazi S, Simental-Mendía LE, Majeed M, Sahebkar A. Effects of Curcuminoids Plus Piperine on Glycemic, Hepatic and Inflammatory Biomarkers in Patients with Type 2 Diabetes Mellitus: A Randomized Double-Blind Placebo-Controlled Trial. Drug Res (Stuttg). 2018 Jul;68(7):403-409. doi: 10.1055/s-0044-101752.

    Google Scholar 

  25. Chandran B, Goel A (2012) A randomized, pilot study to assess the efficacy and safety of curcumin in patients with active rheumatoid arthritis. Phytother Res 26(11):1719–1725

    CAS  PubMed  Google Scholar 

  26. Momtazi AA, Derosa G, Maffioli P, Banach M, Sahebkar A (2016) Role of microRNAs in the therapeutic effects of curcumin in non-cancer diseases. Mol Diagn Ther 20(4):335–345

    Google Scholar 

  27. Appendino G, Belcaro G, Cornelli U, Luzzi R, Togni S, Dugall M et al (2011) Potential role of curcumin phytosome (Meriva) in controlling the evolution of diabetic microangiopathy. A pilot study. Panminerva Med 53(3 Suppl 1):43–49

    CAS  PubMed  Google Scholar 

  28. Soleimani V, Sahebkar A, Hosseinzadeh H (2018) Turmeric (Curcuma longa) and its major constituent (curcumin) as nontoxic and safe substances: Review. Phytother Res 32(6):985–995

    Google Scholar 

  29. Jang EM, Choi MS, Jung UJ, Kim MJ, Kim HJ, Jeon SM et al (2008) Beneficial effects of curcumin on hyperlipidemia and insulin resistance in high-fat–fed hamsters. Metabolism 57(11):1576–1583

    CAS  PubMed  Google Scholar 

  30. Kapoor P, Ansari MN, Bhandari U (2008) Modulatory effect of curcumin on methionine-induced hyperlipidemia and hyperhomocysteinemia in albino rats. Indian J Exp Biol 46(7):534–540

    CAS  PubMed  Google Scholar 

  31. Manjunatha H, Srinivasan K (2007) Hypolipidemic and antioxidant effects of dietary curcumin and capsaicin in induced hypercholesterolemic rats. Lipids 42(12):1133

    CAS  PubMed  Google Scholar 

  32. Pari L, Murugan P (2007) Antihyperlipidemic effect of curcumin and tetrahydrocurcumin in experimental type 2 diabetic rats. Ren Fail 29(7):881–889

    CAS  PubMed  Google Scholar 

  33. Shin SK, Ha TY, McGregor RA, Choi MS (2011) Long-term curcumin administration protects against atherosclerosis via hepatic regulation of lipoprotein cholesterol metabolism. Mol Nutr Food Res 55(12):1829–1840

    CAS  PubMed  Google Scholar 

  34. Momtazi-Borojeni AA, Abdollahi E, Nikfar B, Chaichian S, Ekhlasi-Hundrieser M (2019) Curcumin as a potential modulator of M1 and M2 macrophages: new insights in atherosclerosis therapy. Heart Fail Rev 24(3):399–409

    CAS  PubMed  Google Scholar 

  35. Mohammadian Haftcheshmeh S, Karimzadeh MR, Azhdari S, Vahedi P, Abdollahi E, Momtazi-Borojeni AA (2019) Modulatory effects of curcumin on the atherogenic activities of inflammatory monocytes: evidence from in vitro and animal models of human atherosclerosis. Biofactors (Dec 24). https://doi.org/10.1002/biof.1603. [Epub ahead of print]

  36. Usharani P, Mateen A, Naidu M, Raju Y, Chandra N (2008) Effect of NCB-02, atorvastatin and placebo on endothelial function, oxidative stress and inflammatory markers in patients with type 2 diabetes mellitus. Drugs R D 9(4):243–250

    CAS  PubMed  Google Scholar 

  37. Soni K, Kutian R (1992) Effect of oral curcumin administration on serum peroxides and cholesterol levels in human volunteers. Indian J Physiol Phannacol 36(4):273–275

    CAS  Google Scholar 

  38. Ramırez-Boscá A, Soler A, Carrion MA, Dıaz-Alperi J, Bernd A, Quintanilla C et al (2000) An hydroalcoholic extract of Curcuma longa lowers the apo B/apo a ratio: implications for atherogenesis prevention. Mech Ageing Dev 119(1–2):41–47

    PubMed  Google Scholar 

  39. Pungcharoenkul K, Thongnopnua P (2011) Effect of different curcuminoid supplement dosages on total in vivo antioxidant capacity and cholesterol levels of healthy human subjects. Phytother Res 25(11):1721–1726

    CAS  PubMed  Google Scholar 

  40. Mohammadi A, Sahebkar A, Iranshahi M, Amini M, Khojasteh R, Ghayour-Mobarhan M, Ferns GA (2013) Effects of supplementation with curcuminoids on dyslipidemia in obese patients: a randomized crossover trial. Phytother Res 27(3):374–379

    CAS  PubMed  Google Scholar 

  41. Baum L, Cheung SK, Mok VC, Lam LC, Leung VP, Hui E et al (2007) Curcumin effects on blood lipid profile in a 6-month human study. Pharmacol Res 56(6):509–514

    CAS  PubMed  Google Scholar 

  42. Alwi I, Santoso T, Suyono S, Sutrisna B, Suyatna FD, Kresno SB et al (2008) The effect of curcumin on lipid level in patients with acute coronary syndrome. Acta Med Indones 40(4):201–210

    PubMed  Google Scholar 

  43. Sahebkar A (2014) A systematic review and meta-analysis of randomized controlled trials investigating the effects of curcumin on blood lipid levels. Clin Nutr 33(3):406–414

    CAS  PubMed  Google Scholar 

  44. Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB (2007) Bioavailability of curcumin: problems and promises. Mol Pharm 4(6):807–818

    CAS  PubMed  Google Scholar 

  45. Holder GM, Plummer JL, Ryan AJ (1978) The metabolism and excretion of curcumin (1, 7-bis-(4-hydroxy-3-methoxyphenyl)-1, 6-heptadiene-3, 5-dione) in the rat. Xenobiotica 8(12):761–768

    CAS  PubMed  Google Scholar 

  46. Asai A, Miyazawa T (2000) Occurrence of orally administered curcuminoid as glucuronide and glucuronide/sulfate conjugates in rat plasma. Life Sci 67(23):2785–2793

    CAS  PubMed  Google Scholar 

  47. Vareed SK, Kakarala M, Ruffin MT, Crowell JA, Normolle DP, Djuric Z et al (2008) Pharmacokinetics of curcumin conjugate metabolites in healthy human subjects. Cancer Epidemiol Biomark Prev 17(6):1411–1417

    CAS  Google Scholar 

  48. Hoehle SI, Pfeiffer E, Metzler M (2007) Glucuronidation of curcuminoids by human microsomal and recombinant UDP-glucuronosyltransferases. Mol Nutr Food Res 51(8):932–938

    CAS  PubMed  Google Scholar 

  49. Kunati SR, Yang S, William BM, Xu Y (2018) An LC–MS/MS method for simultaneous determination of curcumin, curcumin glucuronide and curcumin sulfate in a phase II clinical trial. J Pharm Biomed Anal 156:189–198

    CAS  PubMed  Google Scholar 

  50. Tsuda T (2018) Curcumin as a functional food-derived factor: degradation products, metabolites, bioactivity, and future perspectives. Food Funct 9(2):705–714

    CAS  PubMed  Google Scholar 

  51. Close B, Banister K, Baumans V, Bernoth EM, Bromage N, Bunyan J et al (1997) Recommendations for euthanasia of experimental animals: Part 2. DGXT of the European Commission. Lab Anim 31(1):1–32

    CAS  PubMed  Google Scholar 

  52. Close B, Banister K, Baumans V, Bernoth E-M, Bromage N, Bunyan J et al (1996) Recommendations for euthanasia of experimental animals: Part 1. DGXI of the European Commission. Lab Anim 30(4):293–316

    CAS  PubMed  Google Scholar 

  53. Chekanov VS, Mortada ME, Tchekanov GV, Maternowski MA, Eisenstein R, Pello N et al (2002) Pathologic and histologic results of electrical impulses in a rabbit model of atherosclerosis: 24-hour versus 8-hour regimen. J Vasc Surg 35(3):554–562

    PubMed  Google Scholar 

  54. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Panahi Y, Ahmadi Y, Teymouri M, Johnston TP, Sahebkar A (2018) Curcumin as a potential candidate for treating hyperlipidemia: a review of cellular and metabolic mechanisms. J Cell Physiol 233(1):141–152

    CAS  PubMed  Google Scholar 

  56. Lin K, Chen H, Chen X, Qian J, Huang S, Huang W (2020) Efficacy of curcumin on aortic atherosclerosis: a systematic review and meta-analysis in mouse studies and insights into possible mechanisms. Oxidative Med Cell Longev 2020:1520747. https://doi.org/10.1155/2020/1520747

    Article  CAS  Google Scholar 

  57. Qin S, Huang L, Gong J, Shen S, Huang J, Ren H et al (2017) Efficacy and safety of turmeric and curcumin in lowering blood lipid levels in patients with cardiovascular risk factors: a meta-analysis of randomized controlled trials. Nutr J 16(1):68. https://doi.org/10.1186/s12937-017-0293-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) (2002) Third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III) final report. Circulation 106(25):3143–3421

    Google Scholar 

  59. Shao W, Yu Z, Chiang Y, Yang Y, Chai T, Foltz W et al (2012) Curcumin prevents high fat diet induced insulin resistance and obesity via attenuating lipogenesis in liver and inflammatory pathway in adipocytes. PLoS One 7(1):e28784. https://doi.org/10.1371/journal.pone.0028784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Fan C, Wo X, Dou X, Xu L, Qian Y, Luo Y et al (2006) Regulation of LDL receptor expression by the effect of curcumin on sterol regulatory element pathway. Pharmacological Rep 58(4):577–581

    CAS  Google Scholar 

  61. Peschel D, Koerting R, Nass N (2007) Curcumin induces changes in expression of genes involved in cholesterol homeostasis. J Nutr Biochem 18(2):113–119

    CAS  PubMed  Google Scholar 

  62. Miller M, Stone NJ, Ballantyne C, Bittner V, Criqui MH, Ginsberg HN et al (2011) Triglycerides and cardiovascular disease: a scientific statement from the American Heart Association. Circulation 123(20):2292–2333

    PubMed  Google Scholar 

  63. Nordestgaard BG, Benn M, Schnohr P, Tybjærg-Hansen A (2007) Nonfasting triglycerides and risk of myocardial infarction, ischemic heart disease, and death in men and women. JAMA 298(3):299–308

    CAS  PubMed  Google Scholar 

  64. Investigators AIM-HIGH, Boden WE, Probstfield JL, Anderson T, Chaitman BR, Desvignes-Nickens P et al (2011) Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N Engl J Med 365(24):2255–2267

    Google Scholar 

  65. HPS2-THRIVE Collaborative Group, Haynes R, Jiang L, Hopewell JC, Li J, Chen F et al (2013) HPS2-THRIVE randomized placebo-controlled trial in 25 673 high-risk patients of ER niacin/laropiprant: trial design, pre-specified muscle and liver outcomes, and reasons for stopping study treatment. Eur Heart J 34(17):1279–1291

    PubMed Central  Google Scholar 

  66. Khera AV, Rader DJ (2010) Future therapeutic directions in reverse cholesterol transport. Curr Atheroscler Rep 12(1):73–81

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Yang YS, Su YF, Yang HW, Lee YH, Chou JI, Ueng KC (2014) Lipid-lowering effects of curcumin in patients with metabolic syndrome: a randomized, double-blind, placebo-controlled trial. Phytother Res 28(12):1770–1777

    CAS  PubMed  Google Scholar 

  68. Borén J, Chapman MJ, Krauss RM, Packard CJ, Bentzon JF, Binder CJ et al (2020) Low-density lipoproteins cause atherosclerotic cardiovascular disease: pathophysiological, genetic, and therapeutic insights: a consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J; Feb 13 pii:ehz962. https://doi.org/10.1093/eurheartj/ehz962. [Epub ahead of print]

    Article  CAS  Google Scholar 

  69. Ohashi R, Mu H, Wang X, Yao Q, Chen C (2005) Reverse cholesterol transport and cholesterol efflux in atherosclerosis. QJM 98(12):845–856

    CAS  PubMed  Google Scholar 

  70. Dong SZ, Zhao SP, Wu ZH, Yang J, Xie XZ, Yu BL et al (2011) Curcumin promotes cholesterol efflux from adipocytes related to PPARgamma–LXRalpha–ABCA1 passway. Mol Cell Biochem 358(1–2):281–285

    CAS  PubMed  Google Scholar 

  71. Wong J, Quinn CM, Gelissen IC, Jessup W, Brown AJ (2008) The effect of statins on ABCA1 and ABCG1 expression in human macrophages is influenced by cellular cholesterol levels and extent of differentiation. Atherosclerosis 196(1):180–189

    CAS  PubMed  Google Scholar 

  72. Zhao JF, Ching LC, Huang YC, Chen CY, Chiang AN, Kou YR et al (2012) Molecular mechanism of curcumin on the suppression of cholesterol accumulation in macrophage foam cells and atherosclerosis. Mol Nutr Food Res 56(5):691–701

    CAS  PubMed  Google Scholar 

  73. Tian M, Wang L, Yu G, Liu B, Li Y (2012) Curcumin promotes cholesterol efflux from brain through LXR/RXR-ABCA1-apoA1 pathway in chronic cerebral hypoperfusion aging-rats. Mol Neurodegener 7:S7. https://doi.org/10.1186/1750-1326-7-S1-S7

    Article  PubMed Central  Google Scholar 

Download references

Conflict of Interest

Muhammed Majeed is the founder of Sabinsa Corp. and Sami Labs Ltd. The other authors declare no competing interests.

Funding

We are thankful for the financial support from the National Institute for Medical Research Development (NIMAD), Tehran, Iran (Grant no: 943771). The authors also thank the Research Council at the Mashhad University of Medical Sciences, Mashhad, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amirhossein Sahebkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Momtazi-Borojeni, A.A., Zabihi, N.A., Bagheri, R.K., Majeed, M., Jamialahmadi, T., Sahebkar, A. (2021). Intravenous Curcumin Mitigates Atherosclerosis Progression in Cholesterol-Fed Rabbits. In: Barreto, G.E., Sahebkar, A. (eds) Pharmacological Properties of Plant-Derived Natural Products and Implications for Human Health. Advances in Experimental Medicine and Biology, vol 1308. Springer, Cham. https://doi.org/10.1007/978-3-030-64872-5_5

Download citation

Publish with us

Policies and ethics