Skip to main content

Medicinal Plants and Phytochemicals Regulating Insulin Resistance and Glucose Homeostasis in Type 2 Diabetic Patients: A Clinical Review

  • Chapter
  • First Online:
Pharmacological Properties of Plant-Derived Natural Products and Implications for Human Health

Abstract

Diabetes is a major health problem affecting more than four hundred million adults worldwide. The transition from normal glucose tolerance to type 2 diabetes (T2D) is preceded by increased Insulin resistance (IR), an independent predictor of the development of T2D in high risk (e.g. obese populations, pre-diabetes) individuals. Insulin deficiency resulting from increased IR results in progressive glucose homeostasis dysfunction. Data has shown that IR is affected by many different factors such as genetics, age, exercise, dietary nutrients, obesity, and body fat distribution. One of the most important factors is diet, which plays an essential role in addressing T2D and metabolic syndrome. Nutraceuticals and medicinal plants have been shown to have efficacy in preventing chronic diseases like cancer, non-alcoholic fatty liver disease (NAFLD), cardiovascular disease, diabetes mellitus and metabolic syndrome, likely through the anti-inflammatory properties found in nutraceuticals. However, the effect of these compounds, including traditional plant medicines, herbal formulations or their extracts on IR have not been systematically investigated. The objective of this review was to assess the reported effects of medicinal plants and bioactive natural compounds on IR. The findings confirm that most of the herbal bioactive compounds including resveratrol, garlic, curcumin, cinnamon, ginger, nuts, berberine, anthocyanin, soybean, flaxseed, vegetable oils, and soluble fibers have benefit in their efficacy for decreasing IR, fasting blood sugar (FBS), fasting insulin and HbA1c.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Diab M, Barhoosh HA, Daoudi B, AlMukdad SI, Zaghloul NH, Ashour M et al (2018) Prevention and screening recommendations in type 2 diabetes: review and critical appraisal of clinical practice guidelines. Prim Care Diabetes 13:197

    Article  PubMed  Google Scholar 

  2. Zimmet PZ, Magliano DJ, Herman WH, Shaw JE (2014) Diabetes: a 21st century challenge. Lancet Diabetes Endocrinol 2(1):56–64

    Article  PubMed  Google Scholar 

  3. Chatterjee S, Khunti K, Davies MJ (2017) Type 2 diabetes. Lancet 389(10085):2239–2251

    Article  CAS  PubMed  Google Scholar 

  4. Chen L, Magliano DJ, Zimmet PZ (2012) The worldwide epidemiology of type 2 diabetes mellitus—present and future perspectives. Nat Rev Endocrinol 8(4):228

    Article  CAS  Google Scholar 

  5. National Heart L, Institute B (1998) Clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults: the evidence report. Obes Res 6:651S–210S

    Google Scholar 

  6. Hardy OT, Czech MP, Corvera S (2012) What causes the insulin resistance underlying obesity? Curr Opin Endocrinol Diabetes Obes 19(2):81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Martin BC, Warram JH, Krolewski A, Soeldner J, Kahn C, Bergman R (1992) Role of glucose and insulin resistance in development of type 2 diabetes mellitus: results of a 25-year follow-up study. Lancet 340(8825):925–929

    Article  CAS  PubMed  Google Scholar 

  8. Barroso I, Gurnell M, Crowley V, Agostini M, Schwabe J, Soos M et al (1999) Dominant negative mutations in human PPARγ associated with severe insulin resistance, diabetes mellitus and hypertension. Nature 402(6764):880

    Article  CAS  PubMed  Google Scholar 

  9. Gajovic N, Jovanovic I, Ilic A, Jeremic N, Jakovljevic V, Arsenijevic N et al (2016) Diabetes mellitus directs NKT cells toward type 2 and regulatory phenotype/diabetes Melitus Usmerava Diferencijaciju NKT Celija U Pravcu Tip 2 I Regulatornog Fenotipa. Serbian J Exp Clin Res 17(1):35–41

    Article  CAS  Google Scholar 

  10. Tabák AG, Jokela M, Akbaraly TN, Brunner EJ, Kivimäki M, Witte DR (2009) Trajectories of glycaemia, insulin sensitivity, and insulin secretion before diagnosis of type 2 diabetes: an analysis from the Whitehall II study. Lancet 373(9682):2215–2221

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Jia G, DeMarco VG, Sowers JR (2016) Insulin resistance and hyperinsulinaemia in diabetic cardiomyopathy. Nat Rev Endocrinol 12(3):144

    Article  CAS  PubMed  Google Scholar 

  12. Isfort M, Stevens SC, Schaffer S, Jong CJ, Wold LE (2014) Metabolic dysfunction in diabetic cardiomyopathy. Heart Fail Rev 19(1):35–48

    Article  CAS  PubMed  Google Scholar 

  13. Adeghate E, Singh J (2014) Structural changes in the myocardium during diabetes-induced cardiomyopathy. Heart Fail Rev 19(1):15–23

    Article  PubMed  Google Scholar 

  14. Reaven GM (2008) Insulin resistance: the link between obesity and cardiovascular disease. Endocrinol Metab Clin N Am 37(3):581–601

    Article  CAS  Google Scholar 

  15. Martín-Gallán P, Carrascosa A, Gussinyé M, Domínguez C (2003) Biomarkers of diabetes-associated oxidative stress and antioxidant status in young diabetic patients with or without subclinical complications. Free Radic Biol Med 34(12):1563–1574

    Article  PubMed  CAS  Google Scholar 

  16. Varvařovská J, Racek J, Stožický F, Souček J, Trefil L, Pomahačová R (2003) Parameters of oxidative stress in children with type 1 diabetes mellitus and their relatives. J Diabetes Complicat 17(1):7–10

    Article  Google Scholar 

  17. Zhang P, Liu B, Seo MS, Rhee SG, Obeid LM (1997) Thioredoxin peroxidase is a novel inhibitor of apoptosis with a mechanism distinct from that of Bcl-2. J Biol Chem 272(49):30615–30618

    Article  CAS  PubMed  Google Scholar 

  18. Nishikawa T, Edelstein D, Brownlee M (2000) The missing link: a single unifying mechanism for diabetic complications. Kidney Int 58:S26–S30

    Article  Google Scholar 

  19. Maddux BA, See W, Lawrence JC, Goldfine AL, Goldfine ID, Evans JL (2001) Protection against oxidative stress—induced insulin resistance in rat L6 muscle cells by micromolar concentrations of α-lipoic acid. Diabetes 50(2):404–410

    Article  CAS  PubMed  Google Scholar 

  20. Kahn SE, Hull RL, Utzschneider KM (2006) Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 444(7121):840

    Article  CAS  PubMed  Google Scholar 

  21. Yang Q, Graham TE, Mody N, Preitner F, Peroni OD, Zabolotny JM et al (2005) Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature 436(7049):356

    Article  CAS  PubMed  Google Scholar 

  22. Chen M, Bergman R, Porte D Jr (1988) Insulin resistance and β-cell dysfunction in aging: the importance of dietary carbohydrate. J Clin Endocrinol Metab 67(5):951–957

    Article  CAS  PubMed  Google Scholar 

  23. Feuerer M, Herrero L, Cipolletta D, Naaz A, Wong J, Nayer A et al (2009) Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat Med 15(8):930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nishimura S, Manabe I, Nagasaki M, Eto K, Yamashita H, Ohsugi M et al (2009) CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat Med 15(8):914

    Article  CAS  PubMed  Google Scholar 

  25. Kim MS, Lee MS, Kown DY (2011) Inflammation-mediated obesity and insulin resistance as targets for nutraceuticals. Ann N Y Acad Sci 1229(1):140–146

    Article  CAS  PubMed  Google Scholar 

  26. DeFronzo RA (1979) Glucose intolerance and aging: evidence for tissue insensitivity to insulin. Diabetes 28(12):1095–1101

    Article  CAS  PubMed  Google Scholar 

  27. Chen M, Bergman R, Pacini G, Porte D Jr (1985) Pathogenesis of age-related glucose intolerance in man: insulin resistance and decreased β-cell function. J Clin Endocrinol Metab 60(1):13–20

    Article  CAS  PubMed  Google Scholar 

  28. Prigeon RL, Kahn SE, Porte D Jr (1995) Changes in insulin sensitivity, glucose effectiveness, and B-cell function in regularly exercising subjects. Metabolism 44(10):1259–1263

    Article  CAS  PubMed  Google Scholar 

  29. Chen M, Halter JB, Porte D Jr (1987) The role of dietary carbohydrate in the decreased glucose tolerance of the elderly. J Am Geriatr Soc 35(5):417–424

    Article  CAS  PubMed  Google Scholar 

  30. Olefsky J, Farquhar JW, Reaven G (1973) Relationship between fasting plasma insulin level and resistance to insulin-mediated glucose uptake in normal and diabetic subjects. Diabetes 22(7):507–513

    Article  CAS  PubMed  Google Scholar 

  31. BEARD JC, WARD WK, WALLUM BJ, PORTE JRD (1987) Relationship of islet function to insulin action in human obesity. J Clin Endocrinol Metab 65(1):59–64

    Article  CAS  PubMed  Google Scholar 

  32. Goodpaster BH, Kelley DE, Wing RR, Meier A, Thaete FL (1999) Effects of weight loss on regional fat distribution and insulin sensitivity in obesity. Diabetes 48(4):839–847

    Article  CAS  PubMed  Google Scholar 

  33. Cnop M, Landchild MJ, Vidal J, Havel PJ, Knowles NG, Carr DR et al (2002) The concurrent accumulation of intra-abdominal and subcutaneous fat explains the association between insulin resistance and plasma leptin concentrations: distinct metabolic effects of two fat compartments. Diabetes 51(4):1005–1015

    Article  CAS  PubMed  Google Scholar 

  34. Schwartz RS, Shuman WP, Larson V, Cain KC, Fellingham GW, Beard JC et al (1991) The effect of intensive endurance exercise training on body fat distribution in young and older men. Metabolism 40(5):545–551

    Article  CAS  PubMed  Google Scholar 

  35. Zheng Y, Ley SH, Hu FB (2018) Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol 14(2):88

    Article  PubMed  Google Scholar 

  36. McCarty MF (2005) Nutraceutical resources for diabetes prevention–an update. Med Hypotheses 64(1):151–158

    Article  CAS  PubMed  Google Scholar 

  37. Saxena M, Saxena J, Nema R, Singh D, Gupta A (2013) Phytochemistry of medicinal plants. J Pharmacogn Phytochem 1(6):168

    Google Scholar 

  38. Babu PA, Suneetha G, Boddepalli R, Lakshmi VV, Rani TS, RamBabu Y et al (2006) A database of 389 medicinal plants for diabetes. Bioinformation 1(4):130

    Article  PubMed  PubMed Central  Google Scholar 

  39. Davì G, Santilli F, Patrono C (2010) Nutraceuticals in diabetes and metabolic syndrome. Cardiovasc Ther 28(4):216–226

    Article  PubMed  CAS  Google Scholar 

  40. Van Winkel R, De Hert M, Van Eyck D, Hanssens L, Wampers M, Scheen A et al (2008) Prevalence of diabetes and the metabolic syndrome in a sample of patients with bipolar disorder. Bipolar Disord 10(2):342–348

    Article  PubMed  Google Scholar 

  41. Derosa G, Limas CP, Macías PC, Estrella A, Maffioli P (2014) Dietary and nutraceutical approach to type 2 diabetes. Arch Med Sci: AMS 10(2):336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Banach M, Patti AM, Giglio RV, Cicero AFG, Atanasov AG, Bajraktari G, et al (2018) The role of nutraceuticals in statin intolerant patients. J Am Coll Cardiol 72(1):96–118. https://doi.org/10.1016/j.jacc.2018.04.040

  43. Pendurthi UR, Rao LVM (2000) Suppression of transcription factor Egr-1 by curcumin. Thromb Res 97(4):179–189

    Article  CAS  PubMed  Google Scholar 

  44. Zare Javid A, Hormoznejad R, Yousefimanesh HA, Zakerkish M, Haghighi-zadeh MH, Dehghan P et al (2017) The impact of resveratrol supplementation on blood glucose, insulin, insulin resistance, triglyceride, and periodontal markers in type 2 diabetic patients with chronic periodontitis. Phytother Res 31(1):108–114

    Article  CAS  PubMed  Google Scholar 

  45. Brasnyó P, Molnár GA, Mohás M, Markó L, Laczy B, Cseh J et al (2011) Resveratrol improves insulin sensitivity, reduces oxidative stress and activates the Akt pathway in type 2 diabetic patients. Br J Nutr 106(3):383–389

    Article  PubMed  CAS  Google Scholar 

  46. Movahed A, Nabipour I, Lieben Louis X, Thandapilly SJ, Yu L, Kalantarhormozi M et al (2013) Antihyperglycemic effects of short term resveratrol supplementation in type 2 diabetic patients. Evid Based Complement Alternat Med 2013:1

    Article  Google Scholar 

  47. Bhatt JK, Thomas S, Nanjan MJ (2012) Resveratrol supplementation improves glycemic control in type 2 diabetes mellitus. Nutr Res 32(7):537–541

    Article  CAS  PubMed  Google Scholar 

  48. Bo S, Ponzo V, Ciccone G, Evangelista A, Saba F, Goitre I et al (2016) Six months of resveratrol supplementation has no measurable effect in type 2 diabetic patients. A randomized, double blind, placebo-controlled trial. Pharmacol Res 111:896–905

    Article  CAS  PubMed  Google Scholar 

  49. Talaei B, Amouzegar A, Sahranavard S, Hedayati M, Mirmiran P, Azizi F (2017) Effects of cinnamon consumption on glycemic indicators, advanced glycation end products, and antioxidant status in type 2 diabetic patients. Nutrients 9(9):991

    Article  PubMed Central  CAS  Google Scholar 

  50. Solomon TP, Blannin AK (2009) Changes in glucose tolerance and insulin sensitivity following 2 weeks of daily cinnamon ingestion in healthy humans. Eur J Appl Physiol 105(6):969

    Article  CAS  PubMed  Google Scholar 

  51. Akilen R, Tsiami A, Devendra D, Robinson N (2010) Glycated haemoglobin and blood pressure-lowering effect of cinnamon in multi-ethnic type 2 diabetic patients in the UK: a randomized, placebo-controlled, double-blind clinical trial. Diabet Med 27(10):1159–1167

    Article  CAS  PubMed  Google Scholar 

  52. Vanschoonbeek K, Thomassen BJ, Senden JM, Wodzig WK, van Loon LJ (2006) Cinnamon supplementation does not improve glycemic control in postmenopausal type 2 diabetes patients. J Nutr 136(4):977–980

    Article  CAS  PubMed  Google Scholar 

  53. Mozaffari-Khosravi H, Talaei B, Jalali B-A, Najarzadeh A, Mozayan MR (2014) The effect of ginger powder supplementation on insulin resistance and glycemic indices in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled trial. Complement Ther Med 22(1):9–16

    Article  PubMed  Google Scholar 

  54. Shidfar F, Rajab A, Rahideh T, Khandouzi N, Hosseini S, Shidfar S (2015) The effect of ginger (Zingiber officinale) on glycemic markers in patients with type 2 diabetes. J Complement Integr Med 12(2):165–170

    Article  CAS  PubMed  Google Scholar 

  55. Mahluji S, Attari VE, Mobasseri M, Payahoo L, Ostadrahimi A, Golzari SE (2013) Effects of ginger (Zingiber officinale) on plasma glucose level, HbA1c and insulin sensitivity in type 2 diabetic patients. Int J Food Sci Nutr 64(6):682–686

    Article  CAS  PubMed  Google Scholar 

  56. Arablou T, Aryaeian N, Valizadeh M, Sharifi F, Hosseini A, Djalali M (2014) The effect of ginger consumption on glycemic status, lipid profile and some inflammatory markers in patients with type 2 diabetes mellitus. Int J Food Sci Nutr 65(4):515–520

    Article  CAS  PubMed  Google Scholar 

  57. Yin J, Xing H, Ye J (2008) Efficacy of berberine in patients with type 2 diabetes mellitus. Metabolism 57(5):712–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhang Y, Li X, Zou D, Liu W, Yang J, Zhu N et al (2008) Treatment of type 2 diabetes and dyslipidemia with the natural plant alkaloid berberine. J Clin Endocrinol Metab 93(7):2559–2565

    Article  CAS  PubMed  Google Scholar 

  59. Shidfar F, Ebrahimi SS, Hosseini S, Heydari I, Shidfar S, Hajhassani G (2012) The effects of Berberis vulgaris fruit extract on serum lipoproteins, apoB, apoA-I, homocysteine, glycemic control and total antioxidant capacity in type 2 diabetic patients. Iran J Pharm Res: IJPR 11(2):643

    PubMed  PubMed Central  Google Scholar 

  60. Atkin M, Laight D, Cummings MH (2016) The effects of garlic extract upon endothelial function, vascular inflammation, oxidative stress and insulin resistance in adults with type 2 diabetes at high cardiovascular risk. A pilot double blind randomized placebo controlled trial. J Diabetes Complicat 30(4):723–727

    Article  Google Scholar 

  61. Ghorbani A, Zarvandi M, Rakhshandeh H (2019) A randomized controlled trial of a herbal compound for improving metabolic parameters in diabetic patients with uncontrolled dyslipidemia. Endocr Metab Immune Disord Drug Targets (Formerly Curr Drug Targets Immune Endocr Metab Disord) 19(7):1075–1082

    Article  CAS  Google Scholar 

  62. Li D, Zhang Y, Liu Y, Sun R, Xia M (2015) Purified anthocyanin supplementation reduces dyslipidemia, enhances antioxidant capacity, and prevents insulin resistance in diabetic patients. J Nutr 145(4):742–748

    Article  CAS  PubMed  Google Scholar 

  63. Moazen S, Amani R, Rad AH, Shahbazian H, Ahmadi K, Jalali MT (2013) Effects of freeze-dried strawberry supplementation on metabolic biomarkers of atherosclerosis in subjects with type 2 diabetes: a randomized double-blind controlled trial. Ann Nutr Metab 63(3):256–264

    Article  CAS  PubMed  Google Scholar 

  64. Banihani S, Makahleh S, El-Akawi Z, Al-Fashtaki R, Khabour O, Gharibeh M et al (2014) Fresh pomegranate juice ameliorates insulin resistance, enhances β-cell function, and decreases fasting serum glucose in type 2 diabetic patients. Nutr Res 34(10):862–867

    Article  CAS  PubMed  Google Scholar 

  65. Liu C-Y, Huang C-J, Huang L-H, Chen I-J, Chiu J-P, Hsu C-H (2014) Effects of green tea extract on insulin resistance and glucagon-like peptide 1 in patients with type 2 diabetes and lipid abnormalities: a randomized, double-blinded, and placebo-controlled trial. PLoS One 9(3):e91163

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Hua C, Liao Y, Lin S, Tsai T, Huang C, Chou P (2011) Does supplementation with green tea extract improve insulin resistance in obese type 2 diabetics? A randomized, double-blind, and placebocontrolled clinical trial. Altern Med Rev 16(2):157–163

    Google Scholar 

  67. Fukino Y, Shimbo M, Aoki N, OKUBO T, ISO H (2005) Randomized controlled trial for an effect of green tea consumption on insulin resistance and inflammation markers. J Nutr Sci Vitaminol 51(5):335–342

    Article  CAS  PubMed  Google Scholar 

  68. Ryu O, Lee J, Lee K, Kim H, Seo JA, Kim SG et al (2006) Effects of green tea consumption on inflammation, insulin resistance and pulse wave velocity in type 2 diabetes patients. Diabetes Res Clin Pract 71(3):356–358

    Article  CAS  PubMed  Google Scholar 

  69. MacKenzie T, Leary L, Brooks WB (2007) The effect of an extract of green and black tea on glucose control in adults with type 2 diabetes mellitus: double-blind randomized study. Metabolism 56(10):1340–1344

    Article  CAS  PubMed  Google Scholar 

  70. Ahn HY, Kim M, Seo CR, Yoo HJ, Lee S-H, Lee JH (2018) The effects of Jerusalem artichoke and fermented soybean powder mixture supplementation on blood glucose and oxidative stress in subjects with prediabetes or newly diagnosed type 2 diabetes. Nutr Diabetes 8(1):1–13

    Article  CAS  Google Scholar 

  71. Kim J-I, Kim J, Kang M-J, Lee M-S, Kim J-J, Cha I-J (2005) Effects of pinitol isolated from soybeans on glycaemic control and cardiovascular risk factors in Korean patients with type II diabetes mellitus: a randomized controlled study. Eur J Clin Nutr 59(3):456

    Article  CAS  PubMed  Google Scholar 

  72. Sathyapalan T, Aye M, Rigby A, Fraser W, Kilpatrick E, Atkin S (2017) Effect of soy on bone turn-over markers in men with type 2 diabetes and hypogonadism–a randomised controlled study. Sci Rep 7(1):1–5

    Article  CAS  Google Scholar 

  73. Konya J, Sathyapalan T, Kilpatrick ES, Atkin SL (2019) The effects of soy protein and cocoa with or without isoflavones on glycemic control in type 2 diabetes. A double-blind, randomized, placebo-controlled study. Front Endocrinol 10:296

    Article  Google Scholar 

  74. Jayagopal V, Albertazzi P, Kilpatrick ES, Howarth EM, Jennings PE, Hepburn DA et al (2002) Beneficial effects of soy phytoestrogen intake in postmenopausal women with type 2 diabetes. Diabetes Care 25(10):1709–1714

    Article  CAS  PubMed  Google Scholar 

  75. González S, Jayagopal V, Kilpatrick ES, Chapman T, Atkin SL (2007) Effects of isoflavone dietary supplementation on cardiovascular risk factors in type 2 diabetes. Diabetes Care 30(7):1871–1873

    Article  PubMed  CAS  Google Scholar 

  76. Soleimani Z, Hashemdokht F, Bahmani F, Taghizadeh M, Memarzadeh MR, Asemi Z (2017) Clinical and metabolic response to flaxseed oil omega-3 fatty acids supplementation in patients with diabetic foot ulcer: a randomized, double-blind, placebo-controlled trial. J Diabetes Complicat 31(9):1394–1400

    Article  Google Scholar 

  77. Zheng JS, Lin M, Fang L, Yu Y, Yuan L, Jin Y et al (2016) Effects of n-3 fatty acid supplements on glycemic traits in Chinese type 2 diabetic patients: a double-blind randomized controlled trial. Mol Nutr Food Res 60(10):2176–2184

    Article  CAS  PubMed  Google Scholar 

  78. Soleimani A, Taghizadeh M, Bahmani F, Badroj N, Asemi Z (2017) Metabolic response to omega-3 fatty acid supplementation in patients with diabetic nephropathy: a randomized, double-blind, placebo-controlled trial. Clin Nutr 36(1):79–84

    Article  CAS  PubMed  Google Scholar 

  79. Foster M, Chu A, Petocz P, Samman S (2014) Zinc transporter gene expression and glycemic control in post-menopausal women with type 2 diabetes mellitus. J Trace Elem Med Biol 28(4):448–452

    Article  CAS  PubMed  Google Scholar 

  80. Panahi Y, Khalili N, Sahebi E, Namazi S, Simental-Mendía LE, Majeed M et al (2018) Effects of curcuminoids plus piperine on glycemic, hepatic and inflammatory biomarkers in patients with type 2 diabetes mellitus: a randomized double-blind placebo-controlled trial. Drug Res 68(07):403–409

    Article  CAS  Google Scholar 

  81. Na LX, Li Y, Pan HZ, Zhou XL, Sun DJ, Meng M et al (2013) Curcuminoids exert glucose-lowering effect in type 2 diabetes by decreasing serum free fatty acids: a double-blind, placebo-controlled trial. Mol Nutr Food Res 57(9):1569–1577

    Article  CAS  PubMed  Google Scholar 

  82. Hodaei H, Adibian M, Nikpayam O, Hedayati M, Sohrab G (2019) The effect of curcumin supplementation on anthropometric indices, insulin resistance and oxidative stress in patients with type 2 diabetes: a randomized, double-blind clinical trial. Diabetol Metab Syndr 11(1):41

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Thota RN, Acharya SH, Garg ML (2019) Curcumin and/or omega-3 polyunsaturated fatty acids supplementation reduces insulin resistance and blood lipids in individuals with high risk of type 2 diabetes: a randomised controlled trial. Lipids Health Dis 18(1):31

    Article  PubMed  PubMed Central  Google Scholar 

  84. Asadi S, Gholami MS, Siassi F, Qorbani M, Khamoshian K, Sotoudeh G (2019) Nano curcumin supplementation reduced the severity of diabetic sensorimotor polyneuropathy in patients with type 2 diabetes mellitus: a randomized double-blind placebo-controlled clinical trial. Complement Ther Med 43:253–260

    Article  PubMed  Google Scholar 

  85. Rabiei K, Ebrahimzadeh MA, Saeedi M, Bahar A, Akha O, Kashi Z (2018) Effects of a hydroalcoholic extract of Juglans regia (walnut) leaves on blood glucose and major cardiovascular risk factors in type 2 diabetic patients: a double-blind, placebo-controlled clinical trial. BMC Complement Altern Med 18(1):206

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Hosseini S, Jamshidi L, Mehrzadi S, Mohammad K, Najmizadeh AR, Alimoradi H et al (2014) Effects of Juglans regia L. leaf extract on hyperglycemia and lipid profiles in type two diabetic patients: a randomized double-blind, placebo-controlled clinical trial. J Ethnopharmacol 152(3):451–456

    Article  PubMed  Google Scholar 

  87. Parham M, Heidari S, Khorramirad A, Hozoori M, Hosseinzadeh F, Bakhtyari L et al (2014) Effects of pistachio nut supplementation on blood glucose in patients with type 2 diabetes: a randomized crossover trial. Rev Diabet Stud: RDS 11(2):190

    Article  PubMed  PubMed Central  Google Scholar 

  88. Hernández-Alonso P, Salas-Salvadó J, Baldrich-Mora M, Juanola-Falgarona M, Bulló M (2014) Beneficial effect of pistachio consumption on glucose metabolism, insulin resistance, inflammation, and related metabolic risk markers: a randomized clinical trial. Diabetes Care 37(11):3098–3105

    Article  PubMed  CAS  Google Scholar 

  89. Li S-C, Liu Y-H, Liu J-F, Chang W-H, Chen C-M, Chen C-YO (2011) Almond consumption improved glycemic control and lipid profiles in patients with type 2 diabetes mellitus. Metabolism 60(4):474–479

    Article  CAS  PubMed  Google Scholar 

  90. Jenkins DJ, Kendall CW, Vuksan V, Faulkner D, Augustin LS, Mitchell S et al (2014) Effect of lowering the glycemic load with canola oil on glycemic control and cardiovascular risk factors: a randomized controlled trial. Diabetes Care 37(7):1806–1814

    Article  CAS  PubMed  Google Scholar 

  91. Sarbolouki S, Javanbakht MH, Derakhshanian H, Hosseinzadeh P, Zareei M, Hashemi SB et al (2013) Eicosapentaenoic acid improves insulin sensitivity and blood sugar in overweight type 2 diabetes mellitus patients: a double-blind randomised clinical trial. Singap Med J 54(7):387–390

    Article  Google Scholar 

  92. Mostad IL, Bjerve KS, Bjorgaas MR, Lydersen S, Grill V (2006) Effects of n− 3 fatty acids in subjects with type 2 diabetes: reduction of insulin sensitivity and time-dependent alteration from carbohydrate to fat oxidation. Am J Clin Nutr 84(3):540–550

    Article  CAS  PubMed  Google Scholar 

  93. Jacobo-Cejudo MG, Valdés-Ramos R, Guadarrama-López AL, Pardo-Morales R-V, Martínez-Carrillo BE, Harbige LS (2017) Effect of n-3 polyunsaturated fatty acid supplementation on metabolic and inflammatory biomarkers in type 2 diabetes mellitus patients. Nutrients 9(6):573

    Article  PubMed Central  CAS  Google Scholar 

  94. Ogawa S, Abe T, Nako K, Okamura M, Senda M, Sakamoto T et al (2013) Eicosapentaenoic acid improves glycemic control in elderly bedridden patients with type 2 diabetes. Tohoku J Exp Med 231(1):63–74

    Article  CAS  PubMed  Google Scholar 

  95. Kamalpour M, Ghalandari H, Nasrollahzadeh J (2018) Short-term supplementation of a moderate carbohydrate diet with psyllium reduces fasting plasma insulin and tumor necrosis factor-α in patients with type 2 diabetes mellitus. J Diet Suppl 15(4):507–515

    Article  CAS  PubMed  Google Scholar 

  96. Dall’Alba V, Silva FM, Antonio JP, Steemburgo T, Royer CP, Almeida JC et al (2013) Improvement of the metabolic syndrome profile by soluble fibre–guar gum–in patients with type 2 diabetes: a randomised clinical trial. Br J Nutr 110(9):1601–1610

    Article  PubMed  CAS  Google Scholar 

  97. Abutair AS, Naser IA, Hamed AT (2016) Soluble fibers from psyllium improve glycemic response and body weight among diabetes type 2 patients (randomized control trial). Nutr J 15(1):86

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Shakibaei M, Harikumar KB, Aggarwal BB (2009) Resveratrol addiction: to die or not to die. Mol Nutr Food Res 53(1):115–128

    Article  CAS  PubMed  Google Scholar 

  99. Shankar S, Singh G, Srivastava RK (2007) Chemoprevention by resveratrol: molecular mechanisms and therapeutic potential. Front Biosci 12:4839–4854

    Article  CAS  PubMed  Google Scholar 

  100. Saiko P, Szakmary A, Jaeger W, Szekeres T (2008) Resveratrol and its analogs: defense against cancer, coronary disease and neurodegenerative maladies or just a fad? Mutat Res 658(1–2):68–94

    Article  CAS  PubMed  Google Scholar 

  101. Liu K, Zhou R, Wang B, Mi M-T (2014) Effect of resveratrol on glucose control and insulin sensitivity: a meta-analysis of 11 randomized controlled trials. Am J Clin Nutr 99(6):1510–1519

    Article  CAS  PubMed  Google Scholar 

  102. Qin B, Polansky MM, Sato Y, Adeli K, Anderson RA (2009) Cinnamon extract inhibits the postprandial overproduction of apolipoprotein B48-containing lipoproteins in fructose-fed animals. J Nutr Biochem 20(11):901–908

    Article  CAS  PubMed  Google Scholar 

  103. Allen RW, Schwartzman E, Baker WL, Coleman CI, Phung OJ (2013) Cinnamon use in type 2 diabetes: an updated systematic review and meta-analysis. Ann Fam Med 11(5):452–459

    Article  PubMed  PubMed Central  Google Scholar 

  104. Khan A, Safdar M, Ali Khan MM, Khattak KN, Anderson RA (2003) Cinnamon improves glucose and lipids of people with type 2 diabetes. Diabetes Care 26(12):3215–3218

    Article  PubMed  Google Scholar 

  105. Sheng X, Zhang Y, Gong Z, Huang C, Zang YQ (2008) Improved insulin resistance and lipid metabolism by cinnamon extract through activation of peroxisome proliferator-activated receptors. PPAR Res 2008:581348

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Crawford P (2009) Effectiveness of cinnamon for lowering hemoglobin A1C in patients with type 2 diabetes: a randomized, controlled trial. J Am Board Fam Med 22(5):507–512

    Article  PubMed  Google Scholar 

  107. Qin B, Panickar KS, Anderson RA (2010) Cinnamon: potential role in the prevention of insulin resistance, metabolic syndrome, and type 2 diabetes. J Diabetes Sci Technol 4(3):685–693

    Article  PubMed  PubMed Central  Google Scholar 

  108. Shukla Y, Singh M (2007) Cancer preventive properties of ginger: a brief review. Food Chem Toxicol 45(5):683–690

    Article  CAS  PubMed  Google Scholar 

  109. Grzanna R, Lindmark L, Frondoza CG (2005) Ginger—an herbal medicinal product with broad anti-inflammatory actions. J Med Food 8(2):125–132

    Article  CAS  PubMed  Google Scholar 

  110. Ali BH, Blunden G, Tanira MO, Nemmar A (2008) Some phytochemical, pharmacological and toxicological properties of ginger (Zingiber officinale roscoe): a review of recent research. Food Chem Toxicol 46(2):409–420

    Article  CAS  PubMed  Google Scholar 

  111. Pirillo A, Catapano AL (2015) Berberine, a plant alkaloid with lipid-and glucose-lowering properties: from in vitro evidence to clinical studies. Atherosclerosis 243(2):449–461

    Article  CAS  PubMed  Google Scholar 

  112. Liu Y, Zhang L, Song H, Ji G (2013) Update on berberine in nonalcoholic fatty liver disease. Evid Based Complement Alternat Med 2013:308134

    PubMed  PubMed Central  Google Scholar 

  113. Bagherniya M, Nobili V, Blesso CN, Sahebkar A (2018) Medicinal plants and bioactive natural compounds in the treatment of non-alcoholic fatty liver disease: a clinical review. Pharmacol Res 130:213–240

    Article  CAS  PubMed  Google Scholar 

  114. Suleria HAR, Butt MS, Khalid N, Sultan S, Raza A, Aleem M et al (2015) Garlic (Allium sativum): diet based therapy of 21st century–a review. Asian Pac J Trop Dis 5(4):271–278

    Article  CAS  Google Scholar 

  115. Tsai C-W, Chen H-W, Sheen L-Y, Lii C-K (2012) Garlic: health benefits and actions. Biomedicine 2(1):17–29

    Article  Google Scholar 

  116. Borek C (2001) Antioxidant health effects of aged garlic extract. J Nutr 131(3):1010S–1015S

    Article  CAS  PubMed  Google Scholar 

  117. Aamir K, Khan HU, Sethi G, Hossain MA, Arya A (2020) Wnt signaling mediates TLR pathway and promote unrestrained adipogenesis and metaflammation: therapeutic targets for obesity and type 2 diabetes. Pharmacol Res 152:104602

    Article  CAS  PubMed  Google Scholar 

  118. Abdallah M, Altass HM, Al Jahdaly BA, Salem MM (2018) Some natural aqueous extracts of plants as green inhibitor for carbon steel corrosion in 0.5 M sulfuric acid. Green Chem Lett Rev 11(3):189–196

    Article  CAS  Google Scholar 

  119. Abebe W (2019) Review of herbal medications with the potential to cause bleeding: dental implications, and risk prediction and prevention avenues. EPMA J 10(1):51–64

    Article  PubMed  PubMed Central  Google Scholar 

  120. Wang Y, Zhao L, Wang D, Huo Y, Ji B (2016) Anthocyanin-rich extracts from blackberry, wild blueberry, strawberry, and chokeberry: antioxidant activity and inhibitory effect on oleic acid-induced hepatic steatosis in vitro. J Sci Food Agric 96(7):2494–2503

    Article  CAS  PubMed  Google Scholar 

  121. Valenti L, Riso P, Mazzocchi A, Porrini M, Fargion S, Agostoni C (2013) Dietary anthocyanins as nutritional therapy for nonalcoholic fatty liver disease. Oxidative Med Cell Longev 2013:1

    Article  CAS  Google Scholar 

  122. Tsuda T (2012) Dietary anthocyanin-rich plants: biochemical basis and recent progress in health benefits studies. Mol Nutr Food Res 56(1):159–170

    Article  CAS  PubMed  Google Scholar 

  123. Koo SI, Noh SK (2007) Green tea as inhibitor of the intestinal absorption of lipids: potential mechanism for its lipid-lowering effect. J Nutr Biochem 18(3):179–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Ueda M, Nishiumi S, Nagayasu H, Fukuda I, Yoshida K-i, Ashida H (2008) Epigallocatechin gallate promotes GLUT4 translocation in skeletal muscle. Biochem Biophys Res Commun 377(1):286–290

    Article  CAS  PubMed  Google Scholar 

  125. Wolfram S (2007) Effects of green tea and EGCG on cardiovascular and metabolic health. J Am Coll Nutr 26(4):373S–388S

    Article  CAS  PubMed  Google Scholar 

  126. Stangl V, Lorenz M, Stangl K (2006) The role of tea and tea flavonoids in cardiovascular health. Mol Nutr Food Res 50(2):218–228

    Article  CAS  PubMed  Google Scholar 

  127. Hakim IA, Harris RB, Brown S, Chow HS, Wiseman S, Agarwal S et al (2003) Effect of increased tea consumption on oxidative DNA damage among smokers: a randomized controlled study. J Nutr 133(10):3303S–3309S

    Article  CAS  PubMed  Google Scholar 

  128. Kim J-a, Formoso G, Li Y, Potenza MA, Marasciulo FL, Montagnani M et al (2007) Epigallocatechin gallate, a green tea polyphenol, mediates NO-dependent vasodilation using signaling pathways in vascular endothelium requiring reactive oxygen species and Fyn. J Biol Chem 282(18):13736–13745

    Article  CAS  PubMed  Google Scholar 

  129. Khan N, Mukhtar H (2008) Multitargeted therapy of cancer by green tea polyphenols. Cancer Lett 269(2):269–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Sakata R, Nakamura T, Torimura T, Ueno T, Sata M (2013) Green tea with high-density catechins improves liver function and fat infiltration in non-alcoholic fatty liver disease (NAFLD) patients: a double-blind placebo-controlled study. Int J Mol Med 32(5):989–994

    Article  CAS  PubMed  Google Scholar 

  131. Aboelhadid SM, El-Ashram S, Hassan KM, Arafa WM, Darwish AB (2019) Hepato-protective effect of curcumin and silymarin against Eimeria stiedae in experimentally infected rabbits. Livest Sci 221:33–38

    Article  Google Scholar 

  132. Aborehab NM, El Bishbishy MH, Refaiy A, Waly NE (2017) A putative Chondroprotective role for IL-1 beta and MPO in herbal treatment of experimental osteoarthritis. BMC Complement Altern Med 17:495

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Imai S (2015) Soybean and processed soy foods ingredients, and their role in cardiometabolic risk prevention. Recent Pat Food Nutr Agric 7(2):75–82

    Article  CAS  PubMed  Google Scholar 

  134. Yang H-Y, Tzeng Y-H, Chai C-Y, Hsieh A-T, Chen J-R, Chang L-S et al (2011) Soy protein retards the progression of non-alcoholic steatohepatitis via improvement of insulin resistance and steatosis. Nutrition 27(9):943–948

    Article  CAS  PubMed  Google Scholar 

  135. Friedman M, Brandon DL (2001) Nutritional and health benefits of soy proteins. J Agric Food Chem 49(3):1069–1086

    Article  CAS  PubMed  Google Scholar 

  136. Ahn HY, Kim M, Seo CR, Yoo HJ, Lee S-H, Lee JH (2018) The effects of Jerusalem artichoke and fermented soybean powder mixture supplementation on blood glucose and oxidative stress in subjects with prediabetes or newly diagnosed type 2 diabetes. Nutr Diabetes 8(1):42

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Goyal A, Sharma V, Upadhyay N, Gill S, Sihag M (2014) Flax and flaxseed oil: an ancient medicine & modern functional food. J Food Sci Technol 51(9):1633–1653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Brant LHC, Cardozo LFMF, LGC V, Boaventura GT (2012) Impact of flaxseed intake upon metabolic syndrome indicators in female Wistar rats. Acta Cir Bras 27(8):537–543

    Article  PubMed  Google Scholar 

  139. Hutchins AM, Brown BD, Cunnane SC, Domitrovich SG, Adams ER, Bobowiec CE (2013) Daily flaxseed consumption improves glycemic control in obese men and women with pre-diabetes: a randomized study. Nutr Res 33(5):367–375

    Article  CAS  PubMed  Google Scholar 

  140. Fukumitsu S, Aida K, Shimizu H, Toyoda K (2010) Flaxseed lignan lowers blood cholesterol and decreases liver disease risk factors in moderately hypercholesterolemic men. Nutr Res 30(7):441–446

    Article  CAS  PubMed  Google Scholar 

  141. Pan A, Yu D, Demark-Wahnefried W, Franco OH, Lin X (2009) Meta-analysis of the effects of flaxseed interventions on blood lipids. Am J Clin Nutr 90(2):288–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Martin RC, Aiyer HS, Malik D, Li Y (2012) Effect on pro-inflammatory and antioxidant genes and bioavailable distribution of whole turmeric vs curcumin: similar root but different effects. Food Chem Toxicol 50(2):227–231

    Article  CAS  PubMed  Google Scholar 

  143. Lee H-Y, Kim S-W, Lee G-H, Choi M-K, Chung H-W, Lee Y-C et al (2017) Curcumin and Curcuma longa L. extract ameliorate lipid accumulation through the regulation of the endoplasmic reticulum redox and ER stress. Sci Rep 7(1):6513

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Lelli D, Sahebkar A, Johnston TP, Pedone C (2017) Curcumin use in pulmonary diseases: state of the art and future perspectives. Pharmacol Res 115:133–148

    Article  CAS  PubMed  Google Scholar 

  145. Soleimani V, Sahebkar A, Hosseinzadeh H (2018) Turmeric (Curcuma longa) and its major constituent (curcumin) as nontoxic and safe substances: Review. Phytother Res 32(6):985–995.

    Google Scholar 

  146. Sahebkar A, Henrotin Y (2015) Analgesic efficacy and safety of curcuminoids in clinical practice: a systematic review and meta-analysis of randomized controlled trials. Pain Med 17(6):1192–1202

    PubMed  Google Scholar 

  147. Sahebkar A (2013) Why it is necessary to translate curcumin into clinical practice for the prevention and treatment of metabolic syndrome? Biofactors 39(2):197–208

    Article  CAS  PubMed  Google Scholar 

  148. Saberi-Karimian, M., Keshvari, M., Ghayour-Mobarhan, M., Salehizadeh, L., Rahmani, S., Behnam, B., Jamialahmadi, T., Asgary, S., Sahebkar, A. Effects of curcuminoids on inflammatory status in patients with non-alcoholic fatty liver disease: A randomized controlled trial (2020) Complementary Therapies in Medicine, 49, art. no. 102322. Cited 4 times.

    Google Scholar 

  149. Teymouri M, Pirro M, Johnston TP, Sahebkar A (2017) Curcumin as a multifaceted compound against human papilloma virus infection and cervical cancers: a review of chemistry, cellular, molecular, and preclinical features. Biofactors 43(3):331–346 

    Google Scholar 

  150. Sadeghian M, Rahmani S, Jamialahmadi T, Johnston TP, Sahebkar A (2021) The effect of oral curcumin supplementation on health-related quality of life: A systematic review and meta-analysis of randomized controlled trials. J Affect Disord 278:627–636. https://doi.org/10.1016/j.jad.2020.09.091

  151. Iranshahi M, Sahebkar A, Hosseini ST, Takasaki M, Konoshima T, Tokuda H (2010) Cancer chemopreventive activity of diversin from Ferula diversivittata in vitro and in vivo. Phytomedicine 17(3–4):269–273

    Article  CAS  PubMed  Google Scholar 

  152. Mollazadeh H, Cicero AFG, Blesso CN, Pirro M, Majeed M, Sahebkar A (2019) Immune modulation by curcumin: the role of interleukin-10. Crit Rev Food Sci Nutr 59(1):89–101

    Article  CAS  PubMed  Google Scholar 

  153. Momtazi AA, Derosa G, Maffioli P, Banach M, Sahebkar A (2016) Role of microRNAs in the therapeutic effects of curcumin in non-cancer diseases. Mol Diagn Ther 20(4):335–345

    Article  CAS  PubMed  Google Scholar 

  154. Ghandadi M, Sahebkar A (2017) Curcumin: An effective inhibitor of interleukin-6. Curr Pharm Des 23(6):921–931. 

    Google Scholar 

  155. Panahi Y, Ahmadi Y, Teymouri M, Johnston TP, Sahebkar A (2018) Curcumin as a potential candidate for treating hyperlipidemia: A review of cellular and metabolic mechanisms. J Cell Physiol 233(1):141–152. 

    Google Scholar 

  156. Del Gobbo LC, Falk MC, Feldman R, Lewis K, Mozaffarian D (2015) Effects of tree nuts on blood lipids, apolipoproteins, and blood pressure: systematic review, meta-analysis, and dose-response of 61 controlled intervention trials. Am J Clin Nutr 102(6):1347–1356

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Lin L, Allemekinders H, Dansby A, Campbell L, Durance-Tod S, Berger A et al (2013) Evidence of health benefits of canola oil. Nutr Rev 71(6):370–385

    Article  PubMed  Google Scholar 

  158. Kruse M, von Loeffelholz C, Hoffmann D, Pohlmann A, Seltmann AC, Osterhoff M et al (2015) Dietary rapeseed/canola-oil supplementation reduces serum lipids and liver enzymes and alters postprandial inflammatory responses in adipose tissue compared to olive-oil supplementation in obese men. Mol Nutr Food Res 59(3):507–519

    Article  CAS  PubMed  Google Scholar 

  159. Kaczmarczyk MM, Miller MJ, Freund GG (2012) The health benefits of dietary fiber: beyond the usual suspects of type 2 diabetes mellitus, cardiovascular disease and colon cancer. Metabolism 61(8):1058–1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Mudgil D, Barak S (2013) Composition, properties and health benefits of indigestible carbohydrate polymers as dietary fiber: a review. Int J Biol Macromol 61:1–6

    Article  CAS  PubMed  Google Scholar 

  161. Anderson JW, Baird P, Davis RH, Ferreri S, Knudtson M, Koraym A et al (2009) Health benefits of dietary fiber. Nutr Rev 67(4):188–205

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amirhossein Sahebkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mahdavi, A., Bagherniya, M., Mirenayat, M.S., Atkin, S.L., Sahebkar, A. (2021). Medicinal Plants and Phytochemicals Regulating Insulin Resistance and Glucose Homeostasis in Type 2 Diabetic Patients: A Clinical Review. In: Barreto, G.E., Sahebkar, A. (eds) Pharmacological Properties of Plant-Derived Natural Products and Implications for Human Health. Advances in Experimental Medicine and Biology, vol 1308. Springer, Cham. https://doi.org/10.1007/978-3-030-64872-5_13

Download citation

Publish with us

Policies and ethics