Skip to main content

Possible Mechanisms and Special Clinical Considerations of Curcumin Supplementation in Patients with COVID-19

  • Chapter
  • First Online:
Pharmacological Properties of Plant-Derived Natural Products and Implications for Human Health

Abstract

The novel coronavirus outbreak caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was recognized in late 2019 in Wuhan, China. Subsequently, the World Health Organization declared coronavirus disease 2019 (COVID-19) as a pandemic on 11 March 2020. The proportion of potentially fatal coronavirus infections may vary by location, age, and underlying risk factors. However, acute respiratory distress syndrome (ARDS) is the most frequent complication and leading cause of death in critically ill patients. Immunomodulatory and anti-inflammatory agents have received great attention as therapeutic strategies against COVID-19. Here, we review potential mechanisms and special clinical considerations of supplementation with curcumin as an anti-inflammatory and antioxidant compound in the setting of COVID-19 clinical research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y et al (2020) Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395(10223):497–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Acuti Martellucci C, Flacco ME, Cappadona R, Bravi F, Mantovani L, Manzoli L (2020) SARS-CoV-2 pandemic: an overview. Adv Biol Reg 77100736

    Google Scholar 

  3. Clark A,Jit M,Warren-Gash C,Guthrie B,Wang HHX,Mercer SW et al. (2020) Global, regional, and national estimates of the population at increased risk of severe COVID-19 due to underlying health conditions in 2020: a modelling study. Lancet Glob Health

    Google Scholar 

  4. Ragab D, Salah Eldin H, Taeimah M, Khattab R, Salem R (2020) The COVID-19 cytokine storm; what we know so far. 11(1446)

    Google Scholar 

  5. Zhong J, Tang J, Ye C, Dong L (2020) The immunology of COVID-19: is immune modulation an option for treatment? Lancet Rheumatol 2(7):e428–e436

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ware LB, Matthay MA (2000) The acute respiratory distress syndrome. N Engl J Med 342(18):1334–1349

    Article  CAS  PubMed  Google Scholar 

  7. Hewlings SJ, Kalman DS (2017) Curcumin: a review of Its’ effects on human health. Foods 6(10)

    Google Scholar 

  8. Hassanzadeh S, Read MI, Bland AR, Majeed M, Jamialahmadi T, Sahebkar, A (2020) Curcumin: an inflammasome silencer. Pharmacol Res 159:104921. https://doi.org/10.1016/j.phrs.2020.104921

  9. Panahi Y, Ahmadi Y, Teymouri M, Johnston TP, Sahebkar A (2018) Curcumin as a potential candidate for treating hyperlipidemia: A review of cellular and metabolic mechanisms. J Cell Physiol 233(1):141–152

    Google Scholar 

  10. Mollazadeh H, Cicero AFG, Blesso CN, Pirro M, Majeed M, Sahebkar A (2019) Immune modulation by curcumin: the role of interleukin-10. Crit Rev Food Sci Nutr 59(1):89–101

    Article  CAS  PubMed  Google Scholar 

  11. Momtazi AA, Derosa G, Maffioli P, Banach M, Sahebkar A (2016) Role of microRNAs in the therapeutic effects of Curcumin in non-Cancer diseases. Mol Diagnosis Therapy 20(4):335–345

    Article  CAS  Google Scholar 

  12. Iranshahi M, Sahebkar A, Hosseini ST, Takasaki M, Konoshima T, Tokuda H (2010) Cancer chemopreventive activity of diversin from Ferula diversivittata in vitro and in vivo. Phytomedicine 17(3-4):269–273

    Google Scholar 

  13. Ghandadi M, Sahebkar, A (2017) Curcumin: An effective inhibitor of interleukin-6. Curr Pharm Des 23(6):921–931

    Google Scholar 

  14. Teymouri M, Pirro M, Johnston TP, Sahebkar A (2017) Curcumin as a multifaceted compound against human papilloma virus infection and cervical cancers: a review of chemistry, cellular, molecular, and preclinical features. Biofactors 43(3):331–346

    Article  CAS  PubMed  Google Scholar 

  15. Rodríguez-González R, Ramos-Nuez Á, Martín-Barrasa JL, López-Aguilar J, Baluja A, Álvarez J et al (2015) Endotoxin-induced lung alveolar cell injury causes brain cell damage. Exp Biol Med (Maywood) 240(1):135–142

    Article  CAS  Google Scholar 

  16. Gonzales JN, Lucas R, Verin AD (2015) The acute respiratory distress syndrome: mechanisms and perspective therapeutic approaches. Austin J Vasc Med 2(1)

    Google Scholar 

  17. Bhatia M, Moochhala S (2004) Role of inflammatory mediators in the pathophysiology of acute respiratory distress syndrome. J Pathol 202(2):145–156

    Article  CAS  PubMed  Google Scholar 

  18. Wilson JG,Simpson LJ,Ferreira A-M,Rustagi A,Roque J,Asuni A et al. (2020) Cytokine profile in plasma of severe COVID-19 does not differ from ARDS and sepsis. 2020.2005.2015.20103549

    Google Scholar 

  19. Wrigge H, Stüber F, Putensen C (2001) Ventilator-associated systemic inflammation. Springer, Berlin Heidelberg, pp 35–43

    Google Scholar 

  20. Johnson BL 3rd, Goetzman HS, Prakash PS, Caldwell CC (2013) Mechanisms underlying mouse TNF-α stimulated neutrophil derived microparticle generation. Biochem Biophys Res Commun 437(4):591–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tran K, Merika M, Thanos D (1997) Distinct functional properties of IkappaB alpha and IkappaB beta. Mol Cell Biol 17(9):5386–5399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. May MJ, Ghosh S (1998) Signal transduction through NF-κB. Immunol Today 19(2):80–88

    Article  CAS  PubMed  Google Scholar 

  23. Sun Z, Andersson R (2002) NF-kappaB activation and inhibition: a review. Shock 18(2):99–106

    Article  PubMed  Google Scholar 

  24. Parsey MV, Kaneko D, Shenkar R, Abraham E (1999) Neutrophil apoptosis in the lung after hemorrhage or endotoxemia: apoptosis and migration are independent of IL-1beta. Clin Immunol 91(2):219–225

    Article  CAS  PubMed  Google Scholar 

  25. Miller EJ, Cohen AB, Nagao S, Griffith D, Maunder RJ, Martin TR et al (1992) Elevated levels of NAP-1/interleukin-8 are present in the airspaces of patients with the adult respiratory distress syndrome and are associated with increased mortality. Am Rev Respir Dis 146(2):427–432

    Article  CAS  PubMed  Google Scholar 

  26. Kellner M, Noonepalle S, Lu Q, Srivastava A, Zemskov E, Black SM (2017) ROS signaling in the pathogenesis of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Adv Exp Med Biol 967:105–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Magro G (2020) SARS-CoV-2 and COVID-19: is interleukin-6 (IL-6) the ‘culprit lesion’ of ARDS onset? What is there besides Tocilizumab? SGP130Fc. Cytokine: X 2(2):100029

    CAS  Google Scholar 

  28. Buonaguro FM, Puzanov I, Ascierto PA (2020) Anti-IL6R role in treatment of COVID-19-related ARDS. J Transl Med 18(1):165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chen W, Lan Y, Yuan X, Deng X, Li Y, Cai X et al (2020) Detectable 2019-nCoV viral RNA in blood is a strong indicator for the further clinical severity. Emerg Microbes Infect 9(1):469–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hsueh PR, Chen PJ, Hsiao CH, Yeh SH, Cheng WC, Wang JL et al (2004) Patient data, early SARS epidemic, Taiwan. Emerg Infect Dis 10(3):489–493

    Article  PubMed  Google Scholar 

  31. Saraiva M, O’Garra A (2010) The regulation of IL-10 production by immune cells. Nat Rev Immunol 10(3):170–181

    Article  CAS  PubMed  Google Scholar 

  32. Huang X, Xiu H, Zhang S, Zhang G (2018) The role of macrophages in the pathogenesis of ALI/ARDS. Mediat Inflamm 20181264913

    Google Scholar 

  33. Ware LB, Koyama T, Billheimer DD, Wu W, Bernard GR, Thompson BT et al (2010) Prognostic and pathogenetic value of combining clinical and biochemical indices in patients with acute lung injury. Chest 137(2):288–296

    Article  CAS  PubMed  Google Scholar 

  34. Alibolandi M, Mohammadi M, Taghdisi SM, Abnous K, Ramezani M (2017) Synthesis and preparation of biodegradable hybrid dextran hydrogel incorporated with biodegradable curcumin nanomicelles for full thickness wound healing. Int J Pharm 532(1):466–477

    Article  CAS  PubMed  Google Scholar 

  35. Alibolandi M, Hoseini F, Mohammadi M, Ramezani P, Einafshar E, Taghdisi SM et al (2018) Curcumin-entrapped MUC-1 aptamer targeted dendrimer-gold hybrid nanostructure as a theranostic system for colon adenocarcinoma. Int J Pharm 549(1–2):67–75

    Article  CAS  PubMed  Google Scholar 

  36. Lelli D, Sahebkar A, Johnston TP, Pedone C (2017) Curcumin use in pulmonary diseases: state of the art and future perspectives. Pharmacol Res:115133–115148

    Google Scholar 

  37. Xiao X, Yang M, Sun D, Sun S (2012) Curcumin protects against sepsis-induced acute lung injury in rats. J Surg Res 176(1):e31–e39

    Article  CAS  PubMed  Google Scholar 

  38. Guzel A, Kanter M, Guzel A, Yucel AF, Erboga M (2013) Protective effect of curcumin on acute lung injury induced by intestinal ischaemia/reperfusion. Toxicol Ind Health 29(7):633–642

    Article  PubMed  CAS  Google Scholar 

  39. Leth-Larsen R, Nordenbaek C, Tornoe I, Moeller V, Schlosser A, Koch C et al (2003) Surfactant protein D (SP-D) serum levels in patients with community-acquired pneumonia. Clin Immunol 108(1):29–37

    Article  CAS  PubMed  Google Scholar 

  40. Chai YS, Chen YQ, Lin SH, Xie K, Wang CJ, Yang YZ et al (2020) Curcumin regulates the differentiation of naïve CD4+T cells and activates IL-10 immune modulation against acute lung injury in mice. Biomed Pharmacother 125109946

    Google Scholar 

  41. Suresh MV, Wagner MC, Rosania GR, Stringer KA, Min KA, Risler L et al (2012) Pulmonary administration of a water-soluble curcumin complex reduces severity of acute lung injury. Am J Respir Cell Mol Biol 47(3):280–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lian Q, Li X, Shang Y, Yao S, Ma L, Jin SJ et al (2006) Protective effect of curcumin on endotoxin-induced acute lung injury in rats. 26(6):678–681

    Google Scholar 

  43. Cheng K, Yang A, Hu X, Zhu D, Liu K (2018) Curcumin attenuates pulmonary inflammation in lipopolysaccharide induced acute lung injury in neonatal rat model by activating peroxisome proliferator-activated receptor γ (PPARγ) pathway. Med Sci Monitor Int Med J Exp Clin Res 24:1178–1184

    CAS  Google Scholar 

  44. Avasarala S, Zhang F, Liu G, Wang R, London SD, London L (2013) Curcumin modulates the inflammatory response and inhibits subsequent fibrosis in a mouse model of viral-induced acute respiratory distress syndrome. PLoS One 8(2):e57285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dei Cas M, Ghidoni R (2019) Dietary Curcumin: correlation between bioavailability and health potential. Nutrients 11(9)

    Google Scholar 

  46. Stanić Z (2017) Curcumin, a compound from natural sources, a true scientific challenge - a review. Plant Foods Hum Nutr 72(1):1–12

    Article  PubMed  CAS  Google Scholar 

  47. Stohs SJ, Chen O, Ray SD, Ji J, Bucci LR, Preuss HG (2020) Highly bioavailable forms of Curcumin and promising avenues for Curcumin-based research and application: a review. Molecules 25(6)

    Google Scholar 

  48. Gupta SC, Patchva S, Aggarwal BB (2013) Therapeutic roles of curcumin: lessons learned from clinical trials. AAPS J 15(1):195–218

    Article  CAS  PubMed  Google Scholar 

  49. Aggarwal BB, Harikumar KB (2009) Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int J Biochem Cell Biol 41(1):40–59

    Article  CAS  PubMed  Google Scholar 

  50. Saberi-Karimian M, Keshvari M, Ghayour-Mobarhan M, Salehizadeh L, Rahmani S, Behnam B, et al (2020) Effects of curcuminoids on inflammatory status in patients with non-alcoholic fatty liver disease: A randomized controlled trial (2020) Complement Ther Med 49:102322. https://doi.org/10.1016/j.phrs.2020.104921

  51. Panahi Y, Khalili N, Sahebi E, Namazi S, Simental-Mendía LE, Majeed M, Sahebkar A. Effects of Curcuminoids Plus Piperine on Glycemic, Hepatic and Inflammatory Biomarkers in Patients with Type 2 Diabetes Mellitus: A Randomized Double-Blind Placebo-Controlled Trial. Drug Res (Stuttg). 2018 Jul;68(7):403-409. https://doi.org/10.1055/s-0044-101752

  52. Soleimani V, Sahebkar A, Hosseinzadeh H (2018) Turmeric (Curcuma longa) and its major constituent (curcumin) as nontoxic and safe substances: review. Phytother Res 32(6):985–995

    Google Scholar 

  53. Kocaadam B, Şanlier N (2017) Curcumin, an active component of turmeric (Curcuma longa), and its effects on health. Crit Rev Food Sci Nutr 57(13):2889–2895

    Article  CAS  PubMed  Google Scholar 

  54. Lao CD, Ruffin MT, Normolle D, Heath DD, Murray SI, Bailey JM et al (2006) Dose escalation of a curcuminoid formulation. BMC Complement Altern Med 610

    Google Scholar 

  55. Sharma RA, Euden SA, Platton SL, Cooke DN, Shafayat A, Hewitt HR et al (2004) Phase I clinical trial of oral curcumin: biomarkers of systemic activity and compliance. Clin Cancer Res 10(20):6847–6854

    Article  CAS  PubMed  Google Scholar 

  56. Carroll RE, Benya RV, Turgeon DK, Vareed S, Neuman M, Rodriguez L et al (2011) Phase IIa clinical trial of curcumin for the prevention of colorectal neoplasia. Cancer Prev Res (Phila) 4(3):354–364

    Article  CAS  Google Scholar 

  57. Rasyid A, Lelo A (1999) The effect of curcumin and placebo on human gall-bladder function: an ultrasound study. Aliment Pharmacol Ther 13(2):245–249

    Article  CAS  PubMed  Google Scholar 

  58. Rasyid A, Rahman AR, Jaalam K, Lelo A (2002) Effect of different curcumin dosages on human gall bladder. Asia Pac J Clin Nutr 11(4):314–318

    Article  CAS  PubMed  Google Scholar 

  59. Keihanian F, Saeidinia A, Bagheri RK, Johnston TP, Sahebkar A (2018) Curcumin, hemostasis, thrombosis, and coagulation. J Cell Physiol 233(6):4497–4511

    Article  CAS  PubMed  Google Scholar 

  60. Tabeshpour J, Hashemzaei M, Sahebkar A (2018) The regulatory role of curcumin on platelet functions. J Cell Biochem 119(11):8713–8722

    Article  CAS  PubMed  Google Scholar 

  61. Pivari F, Mingione A, Brasacchio C, Soldati L (2019) Curcumin and type 2 diabetes mellitus: prevention and treatment. Nutrients 11(8)

    Google Scholar 

  62. Zhang DW, Fu M, Gao SH, Liu JL (2013) Curcumin and diabetes: a systematic review. Evid Based Complement Alternat Med:2013636053

    Google Scholar 

  63. Gardiner P, Phillips R, Shaughnessy AF (2008) Herbal and dietary supplement--drug interactions in patients with chronic illnesses. Am Fam Physician 77(1):73–78

    PubMed  Google Scholar 

  64. Graham RE,Gandhi TK,Borus J,Seger AC,Burdick E,Bates DW et al. (2008) Advances in patient safety risk of concurrent use of prescription drugs with herbal and dietary supplements in ambulatory care. In: Henriksen K et al. (eds) Advances in patient safety: new directions and alternative approaches (Vol. 4: Technology and Medication Safety). Agency for Healthcare Research and Quality (US)

    Google Scholar 

  65. Bahramsoltani R, Rahimi R, Farzaei MH (2017) Pharmacokinetic interactions of curcuminoids with conventional drugs: a review. J Ethnopharmacol:2091–2012

    Google Scholar 

  66. Butterweck V, Derendorf H, Gaus W, Nahrstedt A, Schulz V, Unger M (2004) Pharmacokinetic herb-drug interactions: are preventive screenings necessary and appropriate? Planta Med 70(9):784–791

    Article  CAS  PubMed  Google Scholar 

  67. Chearwae W, Anuchapreeda S, Nandigama K, Ambudkar SV, Limtrakul P (2004) Biochemical mechanism of modulation of human P-glycoprotein (ABCB1) by curcumin I, II, and III purified from turmeric powder. Biochem Pharmacol 68(10):2043–2052

    Article  CAS  PubMed  Google Scholar 

  68. Rodríguez Castaño P, Parween S, Pandey AV (2019) Bioactivity of Curcumin on the cytochrome P450 enzymes of the Steroidogenic pathway. Int J Mol Sci 20(18)

    Google Scholar 

  69. Eastman RT, Roth JS, Brimacombe KR, Simeonov A, Shen M, Patnaik S et al (2020) Remdesivir: a review of its discovery and development leading to emergency use authorization for treatment of COVID-19. ACS Cent Sci 6(5):672–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Humeniuk R, Mathias A, Cao H, Osinusi A, Shen G, Chng E et al (2020) Safety, tolerability, and pharmacokinetics of Remdesivir, an antiviral for treatment of COVID-19, in healthy subjects. Clin Transl Sci

    Google Scholar 

  71. Yang K (2020) What do we know about Remdesivir drug interactions? Clin Transl Sci

    Google Scholar 

  72. Mukhopadhyay S, Hoidal JR, Mukherjee TK (2006) Role of TNFα in pulmonary pathophysiology. Respir Res 7(1):125

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  73. Voiriot G, Razazi K, Amsellem V, Tran Van Nhieu J, Abid S, Adnot S et al (2017) Interleukin-6 displays lung anti-inflammatory properties and exerts protective hemodynamic effects in a double-hit murine acute lung injury. Respir Res 18(1):64–64

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  74. Calfee CS, Eisner MD, Parsons PE, Thompson BT, Conner ER Jr, Matthay MA et al (2009) Soluble intercellular adhesion molecule-1 and clinical outcomes in patients with acute lung injury. Intensive Care Med 35(2):248–257

    Article  CAS  PubMed  Google Scholar 

  75. Bhatia M, Zemans RL, Jeyaseelan S (2012) Role of chemokines in the pathogenesis of acute lung injury. Am J Respir Cell Mol Biol 46(5):566–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Allen TC, Kurdowska A (2014) Interleukin 8 and acute lung injury. Arch Pathol Lab Med 138(2):266–269

    Article  CAS  PubMed  Google Scholar 

  77. Liu AC, Zhao LX, Xing J, Liu T, Du FY, Lou HX (2012) Pre-treatment with curcumin enhances plasma concentrations of losartan and its metabolite EXP3174 in rats. Biol Pharm Bull 35(2):145–150

    Article  PubMed  Google Scholar 

  78. Juan H, Terhaag B, Cong Z, Bi-Kui Z, Rong-Hua Z, Feng W et al (2007) Unexpected effect of concomitantly administered curcumin on the pharmacokinetics of talinolol in healthy Chinese volunteers. Eur J Clin Pharmacol 63(7):663–668

    Article  PubMed  CAS  Google Scholar 

  79. Zhang W, Tan TMC, Lim L-Y (2007) Impact of Curcumin-induced changes in P-glycoprotein and CYP3A expression on the pharmacokinetics of Peroral Celiprolol and midazolam in rats. Drug Metab Dispos 35(1):110–115

    Article  PubMed  CAS  Google Scholar 

  80. Zhou X, Zhang F, Chen C, Guo Z, Liu J, Yu J et al (2017) Impact of curcumin on the pharmacokinetics of rosuvastatin in rats and dogs based on the conjugated metabolites. Xenobiotica 47(3):267–275

    Article  CAS  PubMed  Google Scholar 

  81. Liu AC, Zhao LX, Lou HX (2013) Curcumin alters the pharmacokinetics of warfarin and clopidogrel in Wistar rats but has no effect on anticoagulation or antiplatelet aggregation. Planta Med 79(11):971–977

    Article  CAS  PubMed  Google Scholar 

  82. Hu S, Belcaro G, Dugall M, Peterzan P, Hosoi M, Ledda A et al (2018) Interaction study between antiplatelet agents, anticoagulants, thyroid replacement therapy and a bioavailable formulation of curcumin (Meriva®). Eur Rev Med Pharmacol Sci 22(15):5042–5046

    CAS  PubMed  Google Scholar 

  83. Taubert D, von Beckerath N, Grimberg G, Lazar A, Jung N, Goeser T et al (2006) Impact of P-glycoprotein on clopidogrel absorption. Clin Pharmacol Therapeutics 80(5):486–501

    Article  CAS  Google Scholar 

  84. Pavithra BH, Prakash N, Jayakumar K (2009) Modification of pharmacokinetics of norfloxacin following oral administration of curcumin in rabbits. J Vet Sci 10(4):293–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Cheng L et al (2011) Effects of Curcumin on the pharmacokinetics of Loratadine in rats: possible role of CYP3A4 and P-glycoprotein inhibition by Curcumin. Biomol Ther 19(3):364–370

    Article  CAS  Google Scholar 

  86. Ganta S, Devalapally H, Amiji M (2010) Curcumin enhances Oral bioavailability and anti-tumor therapeutic efficacy of paclitaxel upon administration in Nanoemulsion formulation. J Pharm Sci 99(11):4630–4641

    Article  CAS  PubMed  Google Scholar 

  87. Yan Y-D, Kim DH, Sung JH, Yong CS, Choi HG (2010) Enhanced oral bioavailability of docetaxel in rats by four consecutive days of pre-treatment with curcumin. Int J Pharm 399(1):116–120

    Article  CAS  PubMed  Google Scholar 

  88. Sun X, Li J, Guo C, Xing H, Xu J, Wen Y et al (2016) Pharmacokinetic effects of curcumin on docetaxel mediated by OATP1B1, OATP1B3 and CYP450s. Drug Metab Pharmacokinet 31(4):269–275

    Article  CAS  PubMed  Google Scholar 

  89. Lee C-K, Ki S-H, Choi J-S (2011) Effects of oral curcumin on the pharmacokinetics of intravenous and oral etoposide in rats: possible role of intestinal CYP3A and P-gp inhibition by curcumin. Biopharm Drug Disposit 32(4):245–251

    Article  CAS  Google Scholar 

  90. Cho YA, Lee W, Choi JS (2012) Effects of curcumin on the pharmacokinetics of tamoxifen and its active metabolite, 4-hydroxytamoxifen, in rats: possible role of CYP3A4 and P-glycoprotein inhibition by curcumin. Pharmazie 67(2):124–130

    CAS  PubMed  Google Scholar 

  91. Hsieh Y-W, Huang C-Y, Yang S-Y, Peng Y-H, Yu C-P, Chao P-DL et al (2014) Oral intake of curcumin markedly activated CYP 3A4: in vivo and ex-vivo studies. Sci Rep 4(1):6587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Cheng K-W, Wong CC, Mattheolabakis G, Xie G, Huang L, Rigas B (2013) Curcumin enhances the lung cancer chemopreventive efficacy of phospho-sulindac by improving its pharmacokinetics. Int J Oncol 43(3):895–902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Competing Interests

none.

Funding

none.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amirhossein Sahebkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Heidari, Z., Mohammadi, M., Sahebkar, A. (2021). Possible Mechanisms and Special Clinical Considerations of Curcumin Supplementation in Patients with COVID-19. In: Barreto, G.E., Sahebkar, A. (eds) Pharmacological Properties of Plant-Derived Natural Products and Implications for Human Health. Advances in Experimental Medicine and Biology, vol 1308. Springer, Cham. https://doi.org/10.1007/978-3-030-64872-5_11

Download citation

Publish with us

Policies and ethics