Skip to main content

The Effect of Curcumin Supplementation on Pulse Wave Velocity in Patients with Metabolic Syndrome: A Randomized, Double-Blind, Placebo-Controlled Trial

  • Chapter
  • First Online:
Pharmacological Properties of Plant-Derived Natural Products and Implications for Human Health

Abstract

Cardiovascular disease is a leading cause of death in many societies. Arterial stiffness is an initial sign of structural and functional changes in the arterial wall. Pulse wave velocity (PWV) is the gold standard for non-invasive evaluation of aortic stiffness and a modifiable cardiovascular risk factor. Curcumin is a major component of turmeric with known anti-inflammatory and anti-oxidative effects. Since arterial stiffness is affected by inflammation and oxidative stress, it may be improved by curcumin supplementation. The purpose of this clinical trial was to investigate the potential effects of curcumin on improving arterial stiffness in patients with metabolic syndrome. This placebo-controlled, double-blind, randomized clinical trial was conducted among metabolic syndrome patients. Sixty-six eligible individuals were randomly assigned to active intervention or control groups. The active intervention group received curcumin supplement at a dose of 500 mg daily for 12 weeks, whereas the control group received placebo capsule. Physical activity, daily dietary energy intake, anthropometric body composition, and biochemical hemodynamic and arterial stiffness parameters were evaluated at baseline and at the end of the study. Body weight decreased significantly in the curcumin group compared to placebo. Also, curcumin intervention improved PWV, which remained significant after adjustment for potential confounding factors (p = 0.011). The current clinical trial demonstrated that daily intake of 500 mg of curcumin for 12 weeks can lead to the improvement of arterial stiffness and weight management among subjects with metabolic syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Castellano JM, Narula J, Castillo J, Fuster V (2014) Promoting cardiovascular health worldwide: strategies, challenges, and opportunities. Rev Esp Cardiol (Engl Ed) 67(9):724–730

    Google Scholar 

  2. Laurent S, Cockcroft J, Van Bortel L, Boutouyrie P, Giannattasio C, Hayoz D et al (2006) Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J 27(21):2588–2605

    PubMed  Google Scholar 

  3. Mozos I, Malainer C, Horbańczuk J, Gug C, Stoian D, Luca CT et al (2017) Inflammatory markers for arterial stiffness in cardiovascular diseases. Front Immunol 8:1058. https://doi.org/10.3389/fimmu.2017.01058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cecelja M, Chowienczyk P (2012) Role of arterial stiffness in cardiovascular disease. JRSM Cardiovasc Dis 1(4):1–10

    Google Scholar 

  5. Shirwany NA, Zou M-h (2010) Arterial stiffness: a brief review. Acta Pharmacol Sin 31(10):1267

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Zieman SJ, Melenovsky V, Kass DA (2005) Mechanisms, pathophysiology, and therapy of arterial stiffness. Arterioscler Thromb Vasc Biol 25(5):932–943

    CAS  PubMed  Google Scholar 

  7. O’Rourke MF, Staessen JA, Vlachopoulos C, Duprez D, Plante GE (2002) Clinical applications of arterial stiffness; definitions and reference values. Am J Hypertens 15(5):426–444

    PubMed  Google Scholar 

  8. Oliver JJ, Webb DJ (2003) Noninvasive assessment of arterial stiffness and risk of atherosclerotic events. Arterioscler Thromb Vasc Biol 23(4):554–566

    CAS  PubMed  Google Scholar 

  9. Janner JH, Godtfredsen NS, Ladelund S, Vestbo J, Prescott E (2013) High aortic augmentation index predicts mortality and cardiovascular events in men from a general population, but not in women. Eur J Prev Cardiol 20(6):1005–1012

    PubMed  Google Scholar 

  10. Janner JH, Godtfredsen N, Ladelund S, Vestbo J, Prescott E (2012) The association between aortic augmentation index and cardiovascular risk factors in a large unselected population. J Hum Hypertens 26(8):476–484

    CAS  PubMed  Google Scholar 

  11. Durmus I, Kazaz Z, Altun G, Cansu A (2014) Augmentation index and aortic pulse wave velocity in patients with abdominal aortic aneurysms. Int J Clin Exp Med 7(2):421–425

    PubMed  PubMed Central  Google Scholar 

  12. Vlachopoulos C, Aznaouridis K, O’Rourke MF, Safar ME, Baou K, Stefanadis C (2010) Prediction of cardiovascular events and all-cause mortality with central haemodynamics: a systematic review and meta-analysis. Eur Heart J 31(15):1865–1871

    PubMed  Google Scholar 

  13. Albu A, Tache S, Mavritsakis N, Potoră C (2017) Physical exercise and arterial stiffness in elderly. Palestrica of the Third Millennium Civilization and Sport 18(2):100–104

    Google Scholar 

  14. Alberti KGM, Zimmet P, Shaw J (2005) The metabolic syndrome—a new worldwide definition. Lancet 366(9491):1059–1062

    PubMed  Google Scholar 

  15. de Ferranti SD, Gauvreau K, Ludwig DS, Neufeld EJ, Newburger JW, Rifai N (2004) Prevalence of the metabolic syndrome in American adolescents: findings from the third National Health and Nutrition Examination Survey. Circulation 110(16):2494–2497

    PubMed  Google Scholar 

  16. Grundy SM, Brewer HB Jr, Cleeman JI, Smith SC Jr, Lenfant C (2004) Definition of metabolic syndrome: report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. Circulation 109(3):433–438

    PubMed  Google Scholar 

  17. Saely CH, Koch L, Schmid F, Marte T, Aczel S, Langer P et al (2006) Adult treatment panel III 2001 but not international diabetes federation 2005 criteria of the metabolic syndrome predict clinical cardiovascular events in subjects who underwent coronary angiography. Diabetes Care 29(4):901–907

    PubMed  Google Scholar 

  18. Fleenor BS (2013) Large elastic artery stiffness with aging: novel translational mechanisms and interventions. Aging Dis 4(2):76–83

    PubMed  Google Scholar 

  19. Chattopadhyay I, Biswas K, Bandyopadhyay U, Banerjee RK (2004) Turmeric and curcumin: biological actions and medicinal applications. Curr Sci 87(1):44–53

    CAS  Google Scholar 

  20. Campbell MS, Berrones AJ, Krishnakumar I, Charnigo RJ, Westgate PM, Fleenor BS (2017) Responsiveness to curcumin intervention is associated with reduced aortic stiffness in young, obese men with higher initial stiffness. J Funct Foods 29:154–160. https://doi.org/10.1016/j.jff.2016.12.013

    Article  CAS  Google Scholar 

  21. Hassanzadeh S, Read MI, Bland AR, Majeed M, Jamialahmadi T, Sahebkar, A (2020) Curcumin: an inflammasome silencer. Pharmacol Res 159:104921. https://doi.org/10.1016/j.phrs.2020.104921

  22. Iranshahi M, Sahebkar A, Hosseini ST, Takasaki M, Konoshima T, Tokuda H (2010) Cancer chemopreventive activity of diversin from Ferula diversivittata in vitro and in vivo. Phytomedicine 17(3–4):269–273

    CAS  PubMed  Google Scholar 

  23. Soleimani V, Sahebkar A, Hosseinzadeh H (2018) Turmeric (Curcuma longa) and its major constituent (curcumin) as nontoxic and safe substances: Review. Phytother Res 32(6):985–995

    Google Scholar 

  24. Mollazadeh H, Cicero AFG, Blesso CN, Pirro M, Majeed M, Sahebkar A (2019) Immune modulation by curcumin: the role of interleukin-10. Crit Rev Food Sci Nutr 59(1):89–101

    CAS  PubMed  Google Scholar 

  25. Ghandadi M, Sahebkar A (2017) Curcumin: An effective inhibitor of interleukin-6. Curr Pharm Des 23(6):921–931

    Google Scholar 

  26. Panahi Y, Khalili N, Sahebi E, Namazi S, Simental-Mendía LE, Majeed M, Sahebkar A. Effects of Curcuminoids Plus Piperine on Glycemic, Hepatic and Inflammatory Biomarkers in Patients with Type 2 Diabetes Mellitus: A Randomized Double-Blind Placebo-Controlled Trial. Drug Res (Stuttg). 2018 Jul;68(7):403-409. doi: 10.1055/s-0044-101752. 

    Google Scholar 

  27. Teymouri M, Pirro M, Johnston TP, Sahebkar A (2017) Curcumin as a multifaceted compound against human papilloma virus infection and cervical cancers: a review of chemistry, cellular, molecular, and preclinical features. Biofactors 43(3):331–346

    Google Scholar 

  28. Momtazi AA, Derosa G, Maffioli P, Banach M, Sahebkar (2016) A role of micrornas in the therapeutic effects of curcumin in non-cancer diseases. Mol Diagn Ther 20(4):335–345

    Google Scholar 

  29. Balogun E, Hoque M, Gong P, Killeen E, Green CJ, Foresti R et al (2003) Curcumin activates the haem oxygenase-1 gene via regulation of Nrf2 and the antioxidant-responsive element. Biochem J 371(3):887–895

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Fang XD, Yang F, Zhu L, Shen YL, Wang LL, Chen YY (2009) Curcumin ameliorates high glucose-induced acute vascular endothelial dysfunction in rat thoracic aorta. Clin Exp Pharmacol Physiol 36(12):1177–1182

    CAS  PubMed  Google Scholar 

  31. Jain SK, Rains J, Croad J, Larson B, Jones K (2009) Curcumin supplementation lowers TNF-α, IL-6, IL-8, and MCP-1 secretion in high glucose-treated cultured monocytes and blood levels of TNF-α, IL-6, MCP-1, glucose, and glycosylated hemoglobin in diabetic rats. Antioxid Redox Signal 11(2):241–249

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Lee H-S, Lee M-J, Kim H, Choi S-K, Kim J-E, Moon H-I et al (2010) Curcumin inhibits TNFα-induced lectin-like oxidised LDL receptor-1 (LOX-1) expression and suppresses the inflammatory response in human umbilical vein endothelial cells (HUVECs) by an antioxidant mechanism. J Enzyme Inhib Med Chem 25(5):720–729

    CAS  PubMed  Google Scholar 

  33. Fleenor BS, Sindler AL, Marvi NK, Howell KL, Zigler ML, Yoshizawa M et al (2013) Curcumin ameliorates arterial dysfunction and oxidative stress with aging. Exp Gerontol 48(2):269–276

    CAS  PubMed  Google Scholar 

  34. Aswathappa J, Garg S, Kutty K, Shankar V (2013) Neck circumference as an anthropometric measure of obesity in diabetics. N Am J Med Sci 5(1):28–31

    PubMed  PubMed Central  Google Scholar 

  35. Capizzi M, Leto G, Petrone A, Zampetti S, Papa RE, Osimani M et al (2011) Wrist circumference is a clinical marker of insulin resistance in overweight and obese children and adolescents. Circulation 123(16):1757–1762

    PubMed  Google Scholar 

  36. Sugawara J, Akazawa N, Miyaki A, Choi Y, Tanabe Y, Imai T et al (2012) Effect of endurance exercise training and curcumin intake on central arterial hemodynamics in postmenopausal women: pilot study. Am J Hypertens 25(6):651–656

    CAS  PubMed  Google Scholar 

  37. Chuengsamarn S, Rattanamongkolgul S, Phonrat B, Tungtrongchitr R, Jirawatnotai S (2014) Reduction of atherogenic risk in patients with type 2 diabetes by curcuminoid extract: a randomized controlled trial. J Nutr Biochem 25(2):144–150

    CAS  PubMed  Google Scholar 

  38. Akazawa N, Choi Y, Miyaki A, Tanabe Y, Sugawara J, Ajisaka R et al (2013) Effects of curcumin intake and aerobic exercise training on arterial compliance in postmenopausal women. Artery Res 7(1):67–72

    Google Scholar 

  39. Santos-Parker JR, Strahler TR, Bassett CJ, Bispham NZ, Chonchol MB, Seals DR (2017) Curcumin supplementation improves vascular endothelial function in healthy middle-aged and older adults by increasing nitric oxide bioavailability and reducing oxidative stress. Aging (Albany NY) 9(1):187–205

    CAS  Google Scholar 

  40. Collaboration TRVfAS (2010) Determinants of pulse wave velocity in healthy people and in the presence of cardiovascular risk factors: ‘establishing normal and reference values’. Eur Heart J 31(19):2338–2350

    Google Scholar 

  41. McNulty M, Mahmud A, Feely J (2007) Advanced glycation end-products and arterial stiffness in hypertension. Am J Hypertens 20(3):242–247

    CAS  PubMed  Google Scholar 

  42. Hodaie H, Adibian M, Sohrab G, Hedayati M (2017) The effects of curcumin supplementation on control glycemic and anthropometric indices in overweight patients with type 2 diabetes. Iranian J Endocrinol Metab 19(1):1–9

    Google Scholar 

  43. Rahimi HR, Mohammadpour AH, Dastani M, Jaafari MR, Abnous K, Mobarhan MG et al (2016) The effect of nano-curcumin on HbA1c, fasting blood glucose, and lipid profile in diabetic subjects: a randomized clinical trial. Avicenna J Phytomed 6(5):567–577

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Rahmani S, Asgary S, Askari G, Keshvari M, Hatamipour M, Feizi A et al (2016) Treatment of non-alcoholic fatty liver disease with curcumin: a randomized placebo-controlled trial. Phytother Res 30(9):1540–1548

    CAS  PubMed  Google Scholar 

  45. Akbari M, Lankarani KB, Tabrizi R, Ghayour-Mobarhan M, Peymani P, Ferns G et al (2019) The effects of curcumin on weight loss among patients with metabolic syndrome and related disorders: a systematic review and meta-analysis of randomized controlled trials. Front Pharmacol 10:649. https://doi.org/10.3389/fphar.2019.00649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ejaz A, Wu D, Kwan P, Meydani M (2009) Curcumin inhibits adipogenesis in 3T3-L1 adipocytes and angiogenesis and obesity in C57/BL mice. J Nutr 139(5):919–925

    CAS  PubMed  Google Scholar 

  47. El-Moselhy MA, Taye A, Sharkawi SS, El-Sisi SF, Ahmed AF (2011) The antihyperglycemic effect of curcumin in high fat diet fed rats. Role of TNF-α and free fatty acids. Food Chem Toxicol 49(5):1129–1140

    CAS  PubMed  Google Scholar 

  48. He H-J, Wang G-Y, Gao Y, Ling W-H, Yu Z-W, Jin T-R (2012) Curcumin attenuates Nrf2 signaling defect, oxidative stress in muscle and glucose intolerance in high fat diet-fed mice. World J Diabetes 3(5):94–104

    PubMed  PubMed Central  Google Scholar 

  49. Maithilikarpagaselvi N, Sridhar MG, Swaminathan RP, Zachariah B (2016) Curcumin prevents inflammatory response, oxidative stress and insulin resistance in high fructose fed male Wistar rats: potential role of serine kinases. Chem Biol Interact 244:187–194

    CAS  PubMed  Google Scholar 

  50. Chuengsamarn S, Rattanamongkolgul S, Luechapudiporn R, Phisalaphong C, Jirawatnotai S (2012) Curcumin extract for prevention of type 2 diabetes. Diabetes Care 35(11):2121–2127

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Panahi Y, Kianpour P, Mohtashami R, Jafari R, Simental-Mendía LE, Sahebkar A (2016) Curcumin lowers serum lipids and uric acid in subjects with nonalcoholic fatty liver disease: a randomized controlled trial. J Cardiovasc Pharmacol 68(3):223–229

    CAS  PubMed  Google Scholar 

  52. Saberi-Karimian M, Parizadeh SMR, Ghayour-Mobarhan M, Salahshooh MM, Dizaji BF, Safarian H et al (2018) Evaluation of the effects of curcumin in patients with metabolic syndrome. Comp Clin Pathol 27(3):555–563

    CAS  Google Scholar 

  53. Panahi Y, Ahmadi Y, Teymouri M, Johnston TP, Sahebkar A (2018) Curcumin as a potential candidate for treating hyperlipidemia: a review of cellular and metabolic mechanisms. J Cell Physiol 233(1):141–152

    CAS  PubMed  Google Scholar 

  54. Shehzad A, Ha T, Subhan F, Lee YS (2011) New mechanisms and the anti-inflammatory role of curcumin in obesity and obesity-related metabolic diseases. Eur J Nutr 50(3):151–161

    CAS  PubMed  Google Scholar 

  55. Maithilikarpagaselvi N, Sridhar MG, Swaminathan RP, Sripradha R, Badhe B (2016) Curcumin inhibits hyperlipidemia and hepatic fat accumulation in high-fructose-fed male Wistar rats. Pharm Biol 54(12):2857–2863

    CAS  PubMed  Google Scholar 

  56. Andrade RJ, Aithal GP, Björnsson ES, Kaplowitz N, Kullak-Ublick GA, Larrey D et al (2019) EASL clinical practice guidelines: drug-induced liver injury. J Hepatol 70(6):1222–1261

    Google Scholar 

Download references

Conflict of Interest

None of the authors had declarations of interest to publish.

Funding

This research was financed by Research Council of the Mashhad University of Medical Sciences, Mashhad, Iran. The results reported in this paper have been derived from a postgraduate thesis (Thesis No: 1445) in Mashhad University of Medical Sciences, Mashhad, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdolreza Norouzy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alidadi, M. et al. (2021). The Effect of Curcumin Supplementation on Pulse Wave Velocity in Patients with Metabolic Syndrome: A Randomized, Double-Blind, Placebo-Controlled Trial. In: Barreto, G.E., Sahebkar, A. (eds) Pharmacological Properties of Plant-Derived Natural Products and Implications for Human Health. Advances in Experimental Medicine and Biology, vol 1308. Springer, Cham. https://doi.org/10.1007/978-3-030-64872-5_1

Download citation

Publish with us

Policies and ethics