Skip to main content

A Review on Ultrasonic Stack Modelling

  • Conference paper
  • First Online:
Advances in Engineering Research and Application (ICERA 2020)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 178))

Included in the following conference series:

  • 1285 Accesses

Abstract

In recent years, the main processing methods for difficult-to-machine materials have focused on the field of ultrasonic-assisted processing. Ultrasonic stack, the key part in ultrasonic equipment, is composed of transducer, booster, and horn. The present literature review aims to provide a broad overview of the recent achievement on the modal assembly of the ultrasonic vibration stack and guide the future development of ultrasonic vibration assisted technologies. With advancement of computer control in ultrasonic machining, this technology can be used for any material in future to achieve world class manufacturing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Nad, M.: Ultrasonic horn design for ultrasonic machining technologies. Appl. Comput. Mech. 4, 68–78 (2010)

    Google Scholar 

  2. Moreland, M., Moore, D.: Versatile performance of ultrasonic machining. Am. Ceram. Soc. Bul. 67, 1045–1047 (1988)

    Google Scholar 

  3. Gilmore, R.: Ultrasonic machining and orbital abrasion techniques, MR89-419 (1989). 01/01

    Google Scholar 

  4. Neppiras, E.A., Foskett, R.D.: Ultrasonic machining – II. Operating conditions and performance of ultrasonic drills. Philips Technical Review, pp. 368–379 (1957)

    Google Scholar 

  5. Moore, D.: Ultrasonic impact grinding, pp. 137–139 (1985)

    Google Scholar 

  6. Kovalchenko, M., Paustovskii, A., Perevyazko, V.: Influence of properties of abrasive materials on the effectiveness of ultrasonic machining of ceramics. Powder Metall. Metal Ceram. 25, 560–562 (1986)

    Article  Google Scholar 

  7. Rozenberg, L.D., Kazantsev, V.F., Makarov, L.O., Yakhimovich, D.F.: Ultrasonic Cutting, p. 142. Consultants Bureau Enterprises, Inc., New York (1964)

    Google Scholar 

  8. Kohls, J.: Ultrasonic manufacturing process: ultrasonic machining (USM) and ultrasonic impact grinding (USIG). Carbide Tool J. 16, 12–15 (1984)

    Google Scholar 

  9. Maurice, H.: Manufacturing Technology, 3rd edn, pp. 270–271, London (1981)

    Google Scholar 

  10. Soundararajan, V., Radhakrishnan, V.: An experimental investigation on the basic mechanisms involved in ultrasonic machining. Int. J. Mach. Tool Des. Res. 26, 307–321 (1986)

    Article  Google Scholar 

  11. Satyanarayana, A., Reddy, B.G.: Design of velocity transformers for ultrasonic machining 24, 11–20 (1984)

    Google Scholar 

  12. Pentland, W., Ektermanis, J.: Improving ultrasonic machining rates—some feasibility studies. J. Eng. Ind. 87, 39–46 (1965)

    Article  Google Scholar 

  13. Brook, R.J.: Concise Encyclopedia of Advanced Ceramic Materials. Pergamon, Oxford (1991)

    Google Scholar 

  14. Kennedy, D.C., Grieve, R.J.: Ultrasonic machining-a review. Prod. Eng. 54, 481–486 (1975)

    Article  Google Scholar 

  15. Perkins, J.: An outline of power ultrasonics. Technical report by Kerry Ultrasonics, p. 7 (1972)

    Google Scholar 

  16. Farago, F.T.: Abrasive Methods Engineering, pp. 480–481. Industrial Pr (1980)

    Google Scholar 

  17. Moreland, M.A.: Ultrasonic impact grinding: what it is: what it will do. In: 1984 Proc. – 22nd Abrasive Engg. Soc. Conf.: Abrasives and Hi-Technology, A 2-way Street, pp. 111–117 (1984)

    Google Scholar 

  18. Seah, K.H.W., Wong, Y.S., Lee, L.C.: Design of tool holders for ultrasonic machining using FEM. J. Mater. Process. Technol. 37(1), 801–816 (1993)

    Article  Google Scholar 

  19. Markov, A.I.: Kinematics of the dimensional ultrasonic machining method. Mach. Tooling 30(10), 28–31 (1959)

    Google Scholar 

  20. Kainth, G.S., Nandy, A., Singh, K.: On the mechanics of material removal in ultrasonic machining. Int. J. Mach. Tool Des. Res. 19, 33–41 (1979)

    Article  Google Scholar 

  21. Kremer, D., Saleh, S.M., Ghabrial, S.R., Moisan, A.: The state of the art of ultrasonic machining. CIRP Ann. Manuf. Technol. 30, 107–110 (1981)

    Article  Google Scholar 

  22. Moreland, M.A.: Ultrasonic machining. In: Engineered Materials Handbook: Ceramics and Glasses, pp. 359–362. ASM International (1991)

    Google Scholar 

  23. Guide to ultrasonic plastic assembly (2011)

    Google Scholar 

  24. Holt, K.: Exploring the ultrasonic welding stack (2010)

    Google Scholar 

  25. Lin, S., Guo, H., Xu, J.: Actively adjustable step-type ultrasonic horns in longitudinal vibration. J. Sound Vibr. 419, 367–379 (2018)

    Article  Google Scholar 

  26. Rawson, F.F.: High power ultrasonic resonant horns: part 1 - basic design concepts: velocity of ultrasound at 20 kHz; effects of material and horn dimensions. In: Ultrasonics International 1987, pp. 680–685. Butterworth-Heinemann (1987)

    Google Scholar 

  27. Kumar, V.P.S., Manikandan, N., Jayaraj, M.: Design and analysis of ultrasonic welding horn using finite element analysis. Int. J. Eng. Sci. Technol. Res. 2, 74–87 (2017)

    Google Scholar 

  28. Rahimi, M., Movahedirad, S., Shahhosseini, S.: CFD study of the flow pattern in an ultrasonic horn reactor: Introducing a realistic vibrating boundary condition. Ultrason. Sonochem. 35, 359–374 (2017)

    Article  Google Scholar 

  29. He, T., Ye, X.-Q., Zhao, Y.: Optimization design for ultrasonic horn with large amplitude based on genetic algorithm. J. Vibroengineering 17(3), 1157–1168 (2015)

    Google Scholar 

  30. Nad, M., Cicmancova, L.: The effect of the shape parameters on modal properties of ultrasonic horn design for ultrasonic assisted machining. In: 8th International DAAAM Baltic Conference Industrial Engineering, pp 57–62 (2012)

    Google Scholar 

  31. Jagadish, Ray, A.: Design and performance analysis of ultrasonic horn with a longitudinally changing rectangular cross section for USM using finite element analysis. J. Braz. Soc. Mech. Sci. Eng. 40(7), 359 (2018)

    Google Scholar 

  32. Kumar, P., Prakasan, K.: Acoustic horn design for joining metallic wire with flat metallic sheet by ultrasonic vibrations. J. Vibroengineering 20, 2758–2770 (2018)

    Article  Google Scholar 

  33. Wang, D.-A., Chuang, W.-Y., Hsu, K., Pham, H.-T.: Design of a Bézier-profile horn for high displacement amplification. Ultrasonics 51(2), 148–156 (2011)

    Article  Google Scholar 

  34. Eisner, E.: Design of sonic amplitude transformers for large magnification. Proc. IEEE 51(3), 512 (1963)

    Article  Google Scholar 

  35. Behera, B., Sahoo, S.K., Patra, L., Rout, M., Kanaujia, K.: Finite element analysis of ultrasonic stepped horn. In: The 5th International Conference on Advances in Mechanical Engineering (ICAME-2011) (2011)

    Google Scholar 

  36. Graff, K.F.: Wave Motion in Elastic Solids. Courier Corporation (2012)

    Google Scholar 

  37. Sindayihebura, D., Bolle, L., Cornet, A., Joannes, L.: Theoretical and experimental study of transducers aimed at low-frequency ultrasonic atomization of liquids. J. Acoust. Soc. Am. 103(3), 1442–1448 (1998)

    Article  Google Scholar 

  38. Lee, C.H., Lal, A.: Silicon ultrasonic horns for thin film accelerated stress testing (2001)

    Google Scholar 

  39. Tsai, S., Song, Y.-L., Tseng, K.-T., Chou, Y., Chen, B.J., Tsai, C.: High-frequency, silicon-based ultrasonic nozzles using multiple fourier horns. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51, 277–285 (2004)

    Article  Google Scholar 

  40. Amza, G., Drimer, D.: The design and construction of solid concentrators for ultrasonic energy. Ultrasonics 14(5), 223–226 (1976)

    Article  Google Scholar 

  41. Coy, J.J., Tse, F.S.: Synthesis of solid elastic horns. J. Eng. Ind. 96(2), 627–632 (1974)

    Article  Google Scholar 

  42. He, X.-P., Gao, J.: A review of ultrasonic solid horn design. SHENGXUE JISHU 25(1), 82–86 (2006)

    MathSciNet  Google Scholar 

  43. Salmon, V.: Generalized plane wave horn theory. J. Acoust. Soc. Am. 17(3), 199–211 (1946)

    Article  Google Scholar 

  44. Kamat, M., Venkayya, V., Khot, N.: Optimization with frequency constraints—limitations. J. Sound Vibr. 91(1), 147–154 (1983)

    Article  MATH  Google Scholar 

  45. Hung, J.-C., Tsai, Y.-P., Hung, C.: Optimization of ultrasonic plastic welding horns on amplitude uniformity. Appl. Mech. Mater. 121(126), 278–282 (2012)

    Google Scholar 

  46. Harkness, P., Mathieson, A., Murray, C., Lucas, M.: Optimization of ultrasonic horns for momentum transfer and survivability in high-frequency/low frequency planetary drill tools. In: Proceedings of the AIAA SPACE Conference and Exposition 2011, Long Beach, CA, USA, September 2011

    Google Scholar 

  47. Roşca, I.C., Chiriacescu, S.T., Creţu, N.C.: Ultrasonic horns optimization. Phys. Procedia 3(1), 1033–1040 (2010)

    Article  Google Scholar 

  48. Rosca, I.-C., Pop, M.-I., Cretu, N.: Experimental and numerical study on an ultrasonic horn with shape designed with an optimization algorithm. Appl. Acoust. 95, 60–69 (2015)

    Article  Google Scholar 

  49. Shu, K.-M., Li, Y.-G., Chan, C.-C., Kuan, J.-B.: Optimized design of the horn of ultrasonic roll welding. Adv. Mater. Res. 482–484, 2223–2226 (2012)

    Google Scholar 

  50. Xu, L., Lin, S., Hu, W.: Optimization design of high power ultrasonic circular ring radiator in coupled vibration. Ultrasonics 51(7), 815–823 (2011)

    Article  Google Scholar 

  51. Hernandez, C., Bernard, Y., Razek, A.: Validation du modèle d’un transducteur de Langevin piézoélectrique par schéma électrique équivalent, 08/01 (2010)

    Google Scholar 

  52. Neppiras, E.A.: Report on ultrasonic machining. Metalworking Prod. 100, 1283–1288, 1333–1336, 1377–1382, 1420–1424, 1464–1468, 1554–1560, 1599–1604 (1956)

    Google Scholar 

  53. Nishimura, G.: Ultrasonic machining - part I. J. Soc. Mech. Eng. 24, 65–100 (1956)

    Google Scholar 

  54. Long, Z., Wu, Y., Han, L., Zhong, J.: Dynamics of ultrasonic transducer system for thermosonic flip chip bonding. IEEE Trans. Compon. Packag. Technol. 32(2), 261–267 (2009)

    Article  Google Scholar 

  55. Thoe, T.B.: Ultrasonic contour machining of ceramic materials. University of Birmingham (1994)

    Google Scholar 

  56. Kocbach, J.: Finite element modeling of ultrasonic piezoelectric transducers. Department of Physics, University of Bergen, University of Bergen, Bergen (2000)

    Google Scholar 

  57. Imperiale, S., Marmorat, S., Leymarie, N., Chatillon, S.: A complete FE simulation tools for NDT inspections with piezoelectric transducers, 04/23 (2012)

    Google Scholar 

  58. Lee, Y.J., Shahid, M.B., Park, D.S.: Designing of ultrasonic horns to improve amplitude uniformity in ultrasonic metal welding. In: MATEC Web Conferences, vol. 257, p. 02009 (2019)

    Google Scholar 

  59. Frederick, J.R.: Ultrasonic Engineering. John, New York (1965)

    Google Scholar 

  60. Amin, S.G., Ahmed, M.H.M., Youssef, H.A.: Optimum design charts of acoustic horns for ultrasonic machining. In: Proceedings of the International Conference on AMPT 1993, vol. 1, pp. 139–147 (1993)

    Google Scholar 

  61. Lin, S.: Radiation impedance and equivalent circuit for piezoelectric ultrasonic composite transducers of vibrational mode-conversion. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59, 139–149 (2012)

    Article  Google Scholar 

  62. Yang, J., Ji, S., Zhao, J., He, Q.: Theoretical analysis and finite element calculation of ultrasonic horn. IOP Conf. Ser.: Mater. Sci. Eng. 612, 032032 (2019). https://doi.org/10.1088/1757-899X/612/3/032032

  63. Singh, D.P., Mishra, S., Porwal, R.K.: Modal analysis of ultrasonic horn using finite element method. Mater. Today Proc. 18, 3617–3623 (2019)

    Article  Google Scholar 

  64. Guiman, V., Rosca, I.: A new approach on vibrating horns design. Shock Vibr. 2017, 1–12 (2017)

    Article  Google Scholar 

  65. Drozda, T.J., Wick, C.: Non-traditional machining. In: Tool and Manufacturing Engineers Handbook, pp. 1–23. Society of Manufacturing Engineers, Dearborn (1983)

    Google Scholar 

  66. Nguyen, H.-T., Nguyen, H.-D., Uan, J.-Y., Wang, D.-A.: A nonrational B-spline profiled horn with high displacement amplification for ultrasonic welding. Ultrasonics 54(8), 2063–2071 (2014)

    Article  Google Scholar 

  67. Lee, D., Cai, W.: The effect of horn knurl geometry on battery tab ultrasonic welding quality: 2D finite element simulations. J. Manuf. Process. 28, 428–441 (2017)

    Article  Google Scholar 

  68. Zhou, C., Ma, H., Yu, X., Liu, B., Yagoub, A.E.-G.A., Pan, Z.: Pretreatment of defatted wheat germ proteins (by-products of flour mill industry) using ultrasonic horn and bath reactors: Effect on structure and preparation of ACE-inhibitory peptides. Ultrason. Sonochem. 20(6), 1390–1400 (2013)

    Google Scholar 

  69. Hatiegan, C., Nedeloni, M., Micliuc, D., Pellac, A., Sorin Laurențiu, B., Pelea, I.: Simulation study with solidworks software of an ultrasonic horn of different materials and dimensions to obtain the natural frequency of 20 KHz. Ann. Constantin Brâncuşi Univ. Târgu Jiu 121–126 (2015)

    Google Scholar 

  70. Boothroyd, G., Knight, W.A.: Fundamentals of Machining and Machine Tools, 2nd edn, pp. 469–475, 490–499, 510–515. Marcel Dekker, Inc. (1990)

    Google Scholar 

  71. Legge, P.: Machining without abrasive slurry. Ultrasonics 4(3), 157–162 (1966)

    Article  Google Scholar 

  72. Drozda, J.T., Wick, C.: Tool and Manufacturing Engineers Handbook: A Reference Book for Manufacturing Engineers, Managers, and Technicians. SERBIULA (sistema Librum 2.0) (2020)

    Google Scholar 

  73. Prabhakar, D., Haselkorn, M.: An experimental investigation of material removal rates in rotary ultrasonic machining. Trans. NAMRI/SME 20, 211–218 (1992)

    Google Scholar 

  74. Jung, J., Lee, W., Kang, W., Shin, E., Ryu, J., Choi, H.: Review of piezoelectric micromachined ultrasonic transducers and their applications. J. Micromech. Microeng. 27, 113001 (2017)

    Article  Google Scholar 

  75. McGeough, J.A.: Advanced Methods of Machining, 1 edn, pp. 170–198. Springer (1988)

    Google Scholar 

  76. Scab, K.H.W., et al.: Parametric studies of ultrasonic machining, SME Tech. paper, MR90-294, 11 p. (1990)

    Google Scholar 

  77. Abdullah, A., Pak, A.: Correct prediction of the vibration behavior of a high power ultrasonic transducer by FEM simulation. Int. J. Adv. Manuf. Technol. 39(1–2), 21–28 (2008)

    Article  Google Scholar 

  78. Gao, C.Y., Xiao, D.G., Pan, Q.X., Xu, C.G.: Ultrasonic transducers frequency response study with equivalent circuit and finite element method. In: Proceedings of the IEEE International Conference Mechatronics and Automation, Beijing, China, 7–10 August 2011, pp. 1746–1750 (2011)

    Google Scholar 

  79. Roh, Y., Khuri-Yakub, B.T.: Finite element modeling of capacitor micromachined ultrasonic transducers. In: Proceedings of the IEEE Ultrasonics Symposium, San Juan, Puerto Rico, 22 October 2000, pp. 905–908 (2000)

    Google Scholar 

  80. Kuo, K.-L.: Design of rotary ultrasonic milling tool using FEM simulation. J. Mater. Process. Technol. 201(1–3), 48–52 (2008)

    Article  Google Scholar 

  81. Abboud, N.N., Wojcik, G.L., Vaughan, D.K., Mould, J., Powell, D.J., Nikodym, L.: Finite element modeling for ultrasonic transducers. In: Proceedings of the SPIE International Sumposium Medical Imaging 1998: Ultrasonic Transducer Engineering, San Diego, CA, USA, 16–21 February 1998, pp. 19–43 (1998)

    Google Scholar 

  82. Balamuth, L.: Ultrasonic assistance to conventional metal removal. Ultrasonics 4(3), 125–130 (1966)

    Google Scholar 

  83. Xianzhong, C., Yixin, Y., Qinwen, H., Liwei, J., Xiaoli, L.: The simulation and structural optimization of ultrasonic transducer. In: 2010 2nd International Conference on Industrial and Information Systems, IIS 2010, vol. 1 (2010)

    Google Scholar 

  84. Tiersten, H.F.: Hamilton’s principle for linear piezoelectric media. Proc. IEEE 55, 1523–1524 (1967)

    Google Scholar 

  85. Allik, H., Hughes, T.: Finite element method for piezoelectric vibration. Int. J. Numer. Methods Eng. 2, 151–157 (1970)

    Google Scholar 

  86. Allik, H.: Vibrational response of sonar transducers using piezoelectric finite elements. J. Acoust. Soc. Am. 56, 1782–1791 (1974)

    Google Scholar 

  87. Naillon, M., Coursant, R., Besnier, F.: Analysis of piezoelectric structures by a finite element method. Acta Electron. Paris 25, 341–362 (1983)

    Google Scholar 

  88. Ostergaard, D.F., Pawlak, T.P.: Three-dimensional finite elements for analyzing piezoelectric structures (1986)

    Google Scholar 

  89. Lerch, R.: Simulation of piezoelectric devices by two- and three-dimensional finite elements. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 37, 233–247 (1990)

    Google Scholar 

  90. Wang, J.-S., Ostergaard, D.: Finite element-electric circuit coupled simulation method for piezoelectric transducer (1999)

    Google Scholar 

  91. Medina, M., Buiochi, F., Adamowski, J.C.: Numerical modeling of a circular piezoelectric ultrasonic transducer radiating water. In: ABCM Symposium Series in Mechatronics, pp. 458–464 (2006)

    Google Scholar 

  92. Nygren, M.W.: Finite element modeling of piezoelectric ultrasonic transducers. Department of Electronics and telecommunications, Norwegian University of Science and Technology, Norway (2011)

    Google Scholar 

  93. Bilgunde, P., Bond, L.: A 2D finite element simulation of liquid coupled ultrasonic NDT system (2014)

    Google Scholar 

  94. Paolis, S., Lionetto, F., Maffezzoli, A.: Finite element modeling of ultrasonic transducers for polymer characterization (2020)

    Google Scholar 

  95. Han, G., Zhang, J., Li, B., Lu, J., Dou, W.: A novel FEM method of modeling and visualization (2012)

    Google Scholar 

  96. Imperiale, S., Joly, P.: Mathematical and numerical modelling of piezoeletric sensors. European Series in Applied and Industrial Mathematics (ESAIM): Mathematical Modelling and Numerical Analysis, vol. 46 (2012)

    Google Scholar 

  97. Voronina, S.V., Babitsky, V.: Autoresonant control strategies of loaded ultrasonic transducer for machining applications. J. Sound Vibr. 313, 395–417 (2008)

    Google Scholar 

  98. Babitsky, V., Astashev, V., Kalashnikov, A.: Autoresonant control of nonlinear mode in ultrasonic transducer for machining applications. Ultrasonics 42, 29–35 (2004)

    Google Scholar 

  99. Wang, S.-H., Tsai, M.-C.: Dynamic modeling of thickness-mode piezoelectric transducer using the block diagram approach. Ultrasonics 51, 617–624 (2011)

    Google Scholar 

  100. Tutunji, T., Saleem, A., Salah, M., Ahmad, N.: Identification of piezoelectric ultrasonic transducers for machining processes (2013)

    Google Scholar 

  101. Rybyanets, A., Eshel, Y., Kushkuley, L.: P2O-4 new low-Q ceramic piezocomposites for ultrasonic transducer applications (2006)

    Google Scholar 

  102. Saleem, A., Salah, M., Ahmad, N., Silberschmidt, V.: Control of ultrasonic transducers for machining applications (2013)

    Google Scholar 

  103. Sherrit, S., Leary, S., Dolgin, B., Bar-Cohen, Y.: Comparison of the mason and KLM equivalent circuits for piezoelectric resonators in the thickness mode (1999)

    Google Scholar 

  104. Smyth, K., Kim, S.-G.: Experiment and simulation validated analytical equivalent circuit model for piezoelectric micromachined ultrasonic transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 62, 744–765 (2015)

    Google Scholar 

  105. Je, Y., Ahn, H., Been, K., Moon, W., Lee, H.: An advanced equivalent circuit for a piezoelectric micromachined ultrasonic transducer and its lumped parameter measurement (2013)

    Google Scholar 

  106. Caliano, G., Iula, A., Pappalardo, M.: An accurate model for capacitive micromachined ultrasonic transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49, 159–168 (2002)

    Google Scholar 

  107. Wang, F., Zhang, H., Liang, C., Tian, Y., Zhao, X., Zhang, D.: Design of high frequency ultrasonic transducers with flexure decoupling flanges for thermosonic bonding. IEEE Trans. Ind. Electron. 63, 1 (2015)

    Google Scholar 

  108. Sammoura, F., Kim, S.-G.: Theoretical modeling and equivalent electric circuit of a bimorph piezoelectric micromachined ultrasonic transducer. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59, 990–998 (2012)

    Google Scholar 

  109. Royer, D., Dieulesaint, E.: Elastic Waves in Solids II: Generation, Acousto-Optic Interaction, Applications. Springer, Heidelberg (2000)

    MATH  Google Scholar 

  110. Marechal, P., Levassort, F., Tran Huu Hue, L., Lethiecq, M.: Lens-focused transducer modeling using an extended KLM model. Ultrasonics 46, 155–167 (2007)

    Google Scholar 

  111. Vives, A.A.: Piezoelectric Transducers and Applications. Springer, Heidelberg (2008)

    Google Scholar 

  112. Perez, N., Buiochi, F., Andrade, M.A., Adamowski, J.: Numerical characterization of piezoceramics using resonance curves. Materials 9, 71 (2016)

    Google Scholar 

  113. Hutchens, C., Morris, S.A.: A two-dimensional equivalent circuit for the tall thin piezoelectric bar (1985)

    Google Scholar 

  114. Bybi, A.: Contribution à l’étude et à la correction de la diaphonie dans les réseaux de transducteurs piézoélectriques pour l’imagerie médicale (2012)

    Google Scholar 

  115. Zhang, J.: Réseaux de transducteurs ultrasonores haute fréquence (100–300 MHz) à commande de phase réalisés à partir des technologies MEMS (2011)

    Google Scholar 

  116. Zhang, J., Xu, W., Carlier, J., Ji, X.M., Nongaillard, B., Queste, S., Huang, Y.P.: Modelling and simulation of high-frequency (100 MHz) ultrasonic linear arrays based on single crystal LiNbO3. Ultrasonics 52, 47–53 (2011)

    Google Scholar 

  117. Bybi, A., Drissi, H., Garoum, M., Hladky-Hennion, A.-C.: One-dimensional electromechanical equivalent circuit for piezoelectric array elements, pp. 3–9 (2019)

    Google Scholar 

  118. Ying, C., Zhaoying, Z., Ganghua, Z.: Effects of different tissue loads on high power ultrasonic surgery scalpel. Ultrasound Med. Biol. 32(3), 415–420 (2006)

    Google Scholar 

  119. Lin, S., Xu, L., Wenxu, H.: A new type of high power composite ultrasonic transducer. J. Sound Vibr. 330(7), 1419–1431 (2011)

    Google Scholar 

  120. Petosić, A., Horvat, M., Budimir, M., Mateljak, P.: High power electromechanical characterization of piezoceramics and low frequency ultrasound transducers by using algorithm for tracking changes in resonant frequency and electrical impedance. Phys. Procedia 70, 1035–1038 (2015)

    Google Scholar 

  121. Ghasemi, N., Walker, G., Broadmeadow, M.: Real time maximum power conversion tracking and resonant frequency modification for high power piezoelectric ultrasound transducer (2015)

    Google Scholar 

  122. Zhang, X., Liang, B.: Piezoelectric ultrasonic transducer for longitudinal-flexural vibrational mode-conversion. Appl. Acoust. 129, 284–290 (2018)

    Google Scholar 

  123. Wei, X., Yang, Y., Yao, W., Zhang, L.: PSpice modeling of a sandwich piezoelectric ceramic ultrasonic transducer in longitudinal vibration. Sensors 17, 2253 (2017)

    Google Scholar 

  124. Lin, S., Tian, H.: Study on the sandwich piezoelectric ceramic ultrasonic transducer in thickness vibration. Smart Mater. Struct. 17, 015034 (2008)

    Google Scholar 

  125. Parrini, L.: New technology for the design of advanced ultrasonic transducers for high-power applications. Ultrasonics 41(4), 261–269 (2003)

    Google Scholar 

  126. Ural, S.O., Tuncdemir, S., Zhuang, Y., Uchino, K.: Development of a high power piezoelectric characterization system and its application for resonance/antiresonance mode characterization. Jpn. J. Appl. Phys. 48, 056509 (2009)

    Google Scholar 

  127. Dong, H., Wu, J., Zhang, H., Zhang, G.: Measurement of a piezoelectric transducer’s mechanical resonant frequency based on residual vibration signals, pp. 1872–1876

    Google Scholar 

  128. Kuang, Y., Sadiq, M., Cochran, S., Huang, Z.: Ultrasonic cutting with resonance tracking and vibration stabliization (2012)

    Google Scholar 

  129. Boucaud, A., Felix, N., Pizarro, L., Patat, F.: High power low frequency ultrasonic transducer: vibration amplitude measurements by an optical interferometric method. In: 1999 IEEE Ultrasonics Symposium. Proceedings International Symposium (Cat. No. 99CH37027), Caesars Tahoe, NV, 1999, vol. 2, pp. 1095–1098 (1999). https://doi.org/10.1109/ULTSYM.1999.849190

  130. Harvey, G., Gachagan, A.: Noninvasive field measurement of low-frequency ultrasonic transducers operating in sealed vessels. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53, 1749–1758 (2006)

    Google Scholar 

  131. Umeda, M., Nakamura, K., Ueha, S.: The measurement of high-power characteristics for a piezoelectric transducer based on the electrical transient response. Jpn. J. Appl. Phys. 37(9B), 5322–5325 (1998)

    Google Scholar 

  132. Sasaki, Y., Umeda, M., Takahashi, S., Yamamoto, M., Ochi, A., Inoue, T.: High-power characteristics of multilayer piezoelectric ceramic transducers. Jpn. J. Appl. Phys. 40, 5743–5746 (2001)

    Google Scholar 

  133. Feeney, A., Bejarano, F., Lucas, M.: Dynamics characterisation of cymbal transducers for power ultrasonics applications. Phys. Procedia 87, 29–34 (2016)

    Google Scholar 

  134. Perrin, V., Troccaz, M., Gonnard, P.: Non linear behavior of the permittivity and of the piezoelectric strain constant under high electric field drive. J. Electroceram. 4(1), 189–194 (2000)

    Google Scholar 

  135. Gonnard, P., Petit, L.: Nonlinear characterization of high power transducers. In: Proceedings of the 13th IEEE International Symposium on Applications of Ferroelectrics, 2002. ISAF 2002, Nara, Japan, 2002, pp. 319–322 (2002). https://doi.org/10.1109/ISAF.2002.1195933

  136. Watanabe, Y., Mori, E.: A study on a new flexural-mode transducer-solid horn system and its application to ultrasonic plastics welding. Ultrasonics 34(2), 235–238 (1996)

    Google Scholar 

  137. Derusova, D.A., Vavilov, V.P., Druzhinin, N.V., Kolomeets, N.P., Chulkov, A.O., Rubtsov, V.E., Kolubaev, E.A.: Investigating vibration characteristics of magnetostrictive transducers for air-coupled ultrasonic NDT of composites. NDT & E Int. 107, 102151 (2019)

    Google Scholar 

  138. Wu, J., Mizuno, Y., Nakamura, K.: Vibration characteristics of polymer-based Langevin transducers. Smart Mater. Struct. 27(9), 095013 (2018)

    Google Scholar 

  139. Feeney, A., Kang, L., Rowlands, G., Zhou, L., Dixon, S.: Dynamic nonlinearity in piezoelectric flexural ultrasonic transducers. IEEE Sens. J. 19(15), 6056–6066 (2019)

    Article  Google Scholar 

  140. Oswin, J.R., Salter, P.L., Santoyo, F.M., Tyrer, J.R.: Electronic speckle pattern interferometric measurement of flextensional transducer vibration patterns: in air and water. J. Sound Vibr. 172(4), 433–448 (1994)

    Google Scholar 

  141. Graham, G., Petzing, J.N., Lucas, M.: Modal analysis of ultrasonic block horns by ESPI. Ultrasonics 37(2), 149–157 (1999)

    Google Scholar 

  142. Albareda, A., Casals, J.A., Pérez, R., de Espinosa, F.M.: Nonlinear measurements of high power 1–3 piezo-air-transducers with burst excitation. Ferroelectrics 273(1), 47–52 (2002)

    Google Scholar 

  143. Kluk, P., Milewski, A., Kardyś, W., Kogut, P., Michalski, P.: Measurement system for parameter estimation and diagnostic of ultrasonic transducers. Acta Phys. Pol. A 124, 468–470 (2013)

    Google Scholar 

  144. Su, S.C., Chang, W.C., Wang, C.Y., Ma, K.H.: The novel measure method for ultrasound transducer with LabVIEW on the high power. In: Lecture Notes in Electrical Engineering, vol. 293, pp. 1101–1109 (2014)

    Google Scholar 

  145. Li, M., Wang, R.: System of ultrasonic transducer performance detection based on virtual instrument and USB 2.0 interface technology, pp. 347–350 (2009)

    Google Scholar 

Download references

Acknowledgement

This work was financially supported by the scientific project No. B2020-TNA-02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Thi Bich Ngoc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khoa, N.N., Ngoc, N.T.B., Tai, T.D. (2021). A Review on Ultrasonic Stack Modelling. In: Sattler, KU., Nguyen, D.C., Vu, N.P., Long, B.T., Puta, H. (eds) Advances in Engineering Research and Application. ICERA 2020. Lecture Notes in Networks and Systems, vol 178. Springer, Cham. https://doi.org/10.1007/978-3-030-64719-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64719-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64718-6

  • Online ISBN: 978-3-030-64719-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics