Skip to main content

The Bidomain Theory of Stimulation

  • Chapter
  • First Online:
Cardiac Bioelectric Therapy

Abstract

The implantable cardiac pacemaker is one of the most important medical innovations of the twentieth century. Yet until recently, researchers have not understood the basic mechanisms governing how a pacemaker excites the heart. The development of a mathematical model describing the electrical properties of cardiac tissue—the bidomain model—helped unravel these mechanisms. This chapter outlines several important predictions of the bidomain model related to pacemakers, including make and break excitation, the shape of the strength-interval curve, the no-response phenomenon, the effect of potassium on pacing, the time dependence of the refractory period, and burst pacing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jeffrey K. Machines in our hearts: the cardiac pacemaker, the implantable defibrillator, and American health care. Baltimore: Johns Hopkins University Press; 2001.

    Google Scholar 

  2. Henriquez CS. Simulating the electrical behavior of cardiac tissue using the bidomain model. Crit Rev Biomed Eng. 1993;21:1–77.

    CAS  PubMed  Google Scholar 

  3. Roth BJ. How the anisotropy of the intracellular and extracellular conductivities influences stimulation of cardiac muscle. J Math Biol. 1992;30:633–46.

    Article  CAS  Google Scholar 

  4. Roth BJ. Electrical conductivity values used with the bidomain model of cardiac tissue. IEEE Trans Biomed Eng. 1997;44:326–8.

    Article  CAS  Google Scholar 

  5. Roth BJ. How to explain why “unequal anisotropy ratios” is important using pictures but no mathematics. In: 28th annual international conference of the IEEE Engineering in Medicine and Biology Society, Aug 30–Sept 3, 2006, New York.

    Google Scholar 

  6. Sepulveda NG, Roth BJ, Wikswo JP Jr. Current injection into a two-dimensional anisotropic bidomain. Biophys J. 1989;55:987–99.

    Article  CAS  Google Scholar 

  7. Neunlist M, Tung L. Spatial distribution of cardiac transmembrane potentials around an extracellular electrode: dependence on fiber orientation. Biophys J. 1995;68:2310–22.

    Article  CAS  Google Scholar 

  8. Knisley SB. Transmembrane voltage changes during unipolar stimulation of rabbit ventricle. Circ Res. 1995;77:1229–39.

    Article  CAS  Google Scholar 

  9. Wikswo JP Jr, Lin S-F, Abbas RA. Virtual electrodes in cardiac tissue: a common mechanism for anodal and cathodal stimulation. Biophys J. 1995;69:2195–210.

    Article  CAS  Google Scholar 

  10. Roth BJ. A mathematical model of make and break electrical stimulation of cardiac tissue by a unipolar anode or cathode. IEEE Trans Biomed Eng. 1995;42:1174–84.

    Article  CAS  Google Scholar 

  11. Roth BJ. Strength-interval curves for cardiac tissue predicted using the bidomain model. J Cardiovasc Electrophysiol. 1996;7:722–37.

    Article  CAS  Google Scholar 

  12. Roth BJ. Nonsustained reentry following successive stimulation of cardiac tissue through a unipolar electrode. J Cardiovasc Electrophysiol. 1997;8:768–78.

    Article  CAS  Google Scholar 

  13. Goto M, Brooks CM. Membrane excitability of the frog ventricle examined by long pulses. Am J Physiol. 1969;217:1236–45.

    Google Scholar 

  14. Dekker E. Direct current make and break thresholds for pacemaker electrodes on the canine ventricle. Circ Res. 1970;27:811–23.

    Article  CAS  Google Scholar 

  15. Lindemans FW, Heethaar RM, Denier van der Gon JJ, Zimmerman ANE. Site of initial excitation and current threshold as a function of electrode radius in heart muscle. Cardiovasc Res. 1975;9:95–104.

    Article  CAS  Google Scholar 

  16. Galappaththige SK, Gray RA, Roth BJ. Cardiac strength-interval curves calculated using a bidomain tissue with a parsimonious ionic current. PLoS One. 2017;12:e0171144.

    Article  Google Scholar 

  17. Lindemans FW, Denier van der Gon JJ. Current thresholds and liminal size in excitation of heart muscle. Cardiovasc Res. 1978;12:477–85.

    Article  CAS  Google Scholar 

  18. Roth BJ. Artifacts, assumptions, and ambiguity: pitfalls in comparing experimental results to numerical simulations when studying electrical stimulation of the heart. Chaos. 2002;12:973–81.

    Article  Google Scholar 

  19. van Dam RT, Durrer D, Strackee J, van der Tweel LH. The excitability cycle of the dog’s left ventricle determined by anodal, cathodal, and bipolar stimulation. Circ Res. 1956;4:196–203.

    Article  Google Scholar 

  20. Cranefield PF, Hoffman BF, Siebens AA. Anodal excitation of cardiac muscle. Am J Physiol. 1957;190:383–90.

    Google Scholar 

  21. Sidorov VY, Woods MC, Baudenbacher P, Baudenbacher F. Examination of stimulation mechanism and strength-interval curve in cardiac tissue. Am J Physiol. 2005;289:H2602–15.

    Google Scholar 

  22. Roth BJ. A mechanism for the “no-response” phenomenon during anodal stimulation of cardiac tissue. In: 19th annual international conference of the IEEE Engineering in Medicine and Biology Society, Oct 30–Nov 2, 1997, Chicago.

    Google Scholar 

  23. Cheng Y, Mowrey KA, van Wagoner DR, Tchou PJ, Efimov IR. Virtual electrode-induced reexcitation: a mechanism of defibrillation. Circ Res. 1999;85:1056–66.

    Article  CAS  Google Scholar 

  24. Rodriguez B, Trayanova N. Upper limit of vulnerability in a defibrillation model of the rabbit ventricles. J Electrocardiol. 2003;36(Suppl):51–6.

    Article  Google Scholar 

  25. Roth BJ, Patel SG. Effects of elevated extracellular potassium ion concentration on anodal excitation of cardiac tissue. J Cardiovasc Electrophysiol. 2003;14:1351–5.

    Article  Google Scholar 

  26. Sidorov VY, Woods MC, Wikswo JP. Effects of elevated extracellular potassium on the stimulation mechanism of diastolic cardiac tissue. Biophys J. 2003;84:3470–9.

    Article  CAS  Google Scholar 

  27. Rodriguez B, Tice BM, Eason JC, Aguel F, Trayanova N. Cardiac vulnerability to electric shocks during phase 1A of acute global ischemia. Heart Rhythm. 2004;1:695–703.

    Article  Google Scholar 

  28. Mehra R, McMullen M, Furman S. Time dependence of unipolar cathodal and anodal strength-interval curves. PACE. 1980;3:526–30.

    Article  CAS  Google Scholar 

  29. Bennett JA, Roth BJ. Time dependence of anodal and cathodal refractory periods in cardiac tissue. PACE. 1999;22:1031–8.

    Article  CAS  Google Scholar 

  30. Whalen RE, Starmer CF, McIntosh HD. Electrical hazards associated with cardiac pacemaking. Ann N Y Acad Sci. 1964;111:922–31.

    Article  CAS  Google Scholar 

  31. Sugimoto T, Schaal SF, Wallace AG. Factors determining vulnerability to ventricular fibrillation induced by 60-CPS alternating current. Circ Res. 1967;21:601–8.

    Article  CAS  Google Scholar 

  32. El-Sherif N, Gough WB, Restivo M. Reentrant ventricular arrhythmias in the late myocardial infarction period: 14. Mechanisms of resetting, entrainment, acceleration, or termination of reentrant tachycardia by programmed electrical stimulation. PACE. 1987;10:341–71.

    Article  CAS  Google Scholar 

  33. El-Sherif N, Mehra R, Gough WB, Zeiler RH. Reentrant ventricular arrhythmias in the late myocardial infarction period: II. Burst pacing versus multiple premature stimulation in the induction of reentry. J Am Coll Cardiol. 1984;4:295–304.

    Article  CAS  Google Scholar 

  34. Janks DL, Roth BJ. Quatrefoil reentry caused by burst pacing. J Cardiovasc Electrophysiol. 2006;17:1362–8.

    Article  Google Scholar 

  35. Saypol JM, Roth BJ. A mechanism for anisotropic reentry in electrically active tissue. J Cardiovasc Electrophysiol. 1992;3:558–66.

    Article  Google Scholar 

  36. Lin S-F, Roth BJ, Wikswo JP Jr. Quatrefoil reentry in myocardium: an optical imaging study of the induction mechanism. J Cardiovasc Electrophysiol. 1999;10:574–86.

    Article  CAS  Google Scholar 

  37. Cua M, Veltri EP. A comparison of ventricular arrhythmias induced with programmed stimulation versus alternating-current. PACE. 1993;16:382–6.

    Article  CAS  Google Scholar 

  38. Efimov IR, Gray RA, Roth BJ. Virtual electrodes and de-excitation: new insights into fibrillation induction and defibrillation. J Cardiovasc Electrophysiol. 2000;11:339–53.

    Google Scholar 

Download references

Acknowledgments

This research was supported by the National Institutes of Health and the American Heart Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bradley J. Roth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Janks, D.L., Roth, B.J. (2021). The Bidomain Theory of Stimulation. In: Efimov, I.R., Ng, F.S., Laughner, J.I. (eds) Cardiac Bioelectric Therapy. Springer, Cham. https://doi.org/10.1007/978-3-030-63355-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63355-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63354-7

  • Online ISBN: 978-3-030-63355-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics