Skip to main content

The History of Mapping

  • Chapter
  • First Online:
Cardiac Bioelectric Therapy

Abstract

Electrophysiological mapping includes sequence of activation mapping, refractory period mapping, and voltage mapping, each of which has its own history. This review is focused on the origin and development of activation mapping. Although areas of study of clinical cardiac electrophysiology did not originate until the late 1960s, activation mapping with electrodes on the surface of the heart had its origin 6 decades earlier, and has continued to develop until incorporated into the study of experimental and clinical electrophysiology of normal and abnormal cardiac rhythms. This is a story of advances in technology that provided the tools that enabled investigators to develop and advance the field of experimental and clinical cardiac electrophysiology of normal and abnormal cardiac rhythms. We have come a long way from the early days of using the string galvanometer, and, subsequently, for decades, the roving electrode probe or catheter. This progress would not have been possible if not for the many dedicated scientists and clinicians who developed and continue to develop the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cobb FR, Blumenschein SD, Sealy WC, Boineau JP, Wagner GS, Wallace AG. Successful surgical interruption of the bundle of Kent in a patient with Wolff-Parkinson-White syndrome. Circulation. 1968;38:1018–29.

    Article  CAS  PubMed  Google Scholar 

  2. Waller AD. A demonstration on man of electromotive changes accompanying the heartbeat. J Physiol. 1887;8:229–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Einthoven began his work in 1895 with the Lippmann capillary electrometer. In an attempt to refine the coarsely differentiated capillary image, he refined the string galvanometer, invented in 1897 by Clement Ader.

    Google Scholar 

  4. The first commercial version of the instrument was made by Sir Horace Darwin, founder of the Cambridge Scientific Instrument Company in England.

    Google Scholar 

  5. Although a cumbersome apparatus, the string galvanometer produced the first direct recordings (Fisch C. Centennial of the string galvanometer and the electrograms. J Am Coll Cardiol. 2000;36:1737–45).

    Google Scholar 

  6. Lewis T, Oppenheimer A, Oppenheimer BS. The site of origin of the mammalian heart beat; the pacemaker in the dog. Heart. 1910;2:147.

    Google Scholar 

  7. Lewis T, Meakins J, White PD. The excitatory process in the dog’s heart. Part 1. The auricles. Philos Trans R Soc Lond (Biol). 1914;205:375–420.

    Google Scholar 

  8. Eyster JAE, Meek WJ. Experiments on the origin and propagation of the impulse in the heart. I. The point of primary negativity in the mammalian heart and the spread of negativity to other regions. Heart. 1914;5:119.

    Google Scholar 

  9. Waldo AL, Plumb VJ, Henthorn RW. Observations on the mechanism of atrial flutter. In: Surawicz B, editor. Tachycardias. The Hague: Martinus Nijhoff; 1984. p. 213–29.

    Chapter  Google Scholar 

  10. Mines GR. On dynamic equilibrium in a heart. J Physiol. 1913;46:349–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Garrey WE. The nature of fibrillary contraction of the heart: its relation to tissue mass and form. Am J Phys. 1914;33:397–414.

    Article  Google Scholar 

  12. Lewis T. The mechanism and graphic registration of the heart beat. London: Shaw & Sons, Ltd.; 1920, 452 pages.

    Google Scholar 

  13. Barker PS, MacLeod AG, Alexander J. The excitatory process observed in the exposed human heart. Am Heart J. 1930;5:720–42, 19.

    Article  Google Scholar 

  14. de Bakker MTE, Vos MA. Evolution of cardiac mapping: from direct Analog to digital multi-dimensional recording. In: Shenasa M, Hindricks G, Borggrefe M, Breithardt MG, Josephson ME, editors. Cardiac mapping. 4th ed. Chichester/Hoboken: Wiley Blackwell; 2013.

    Google Scholar 

  15. Emslie-Smith D. The intracardiac electrogram as an aid in cardiac catheterization. Br Heart J. 1955;17(2):219–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Durrer D, van der Tweei LH. Spread of activation in the left ventricular wall of the dog I. Am Heart J. 1953;46:683–91.

    Article  CAS  PubMed  Google Scholar 

  17. Durrer D, van der Tweei LH. Spread of activation in the left ventricular wall of the dog II. Activation conditions at the epicardial surface. Am Heart J. 1954;47:192–203.

    Article  CAS  PubMed  Google Scholar 

  18. Durrer D, van der Tweei LH, Blickman JR. Spread of activation in the left ventricular wall of the dog III. Transmural and intramural analysis. Am Heart J. 1954;48:13–35.

    Article  CAS  PubMed  Google Scholar 

  19. Durrer D, van der Tweei LH, Berreklouw S, Van Der Wey LP. Spread of activation in the left ventricular wall of the dog. IV. Two and three dimensional analysis. Am Heart J. 1955;50:860–82.

    Article  CAS  PubMed  Google Scholar 

  20. de Bakker JMT, Vos MA. Evolution of cardiac mapping: from direct analog to digital multi-dimensional recording. In: Shenasa M, Hindricks G, Borggrefe M, Breithardt G, Josephson ME, editors. Cardiac mapping. 4th ed. Chichester/Hoboken: Blackwell Publishing Ltd; 2013.

    Google Scholar 

  21. Puech P, Esclavissat M, Sodi Pillares D, Cisneros F. Normal auricular activation in the dog’s heart. Am Heart J. 1954;47:174–91.

    Article  CAS  PubMed  Google Scholar 

  22. Scher AM, Young AC, Malmghen AL, Patton RR. Spread of electrical activity through the wall of the ventricle. Circ Res. 1953;1:539–47.

    Article  CAS  PubMed  Google Scholar 

  23. Scher AM, Young AC, Malmghen AL, Erickson RV. Activation of the interventricular septum. Circ Res. 1955;3:56–64.

    Article  CAS  PubMed  Google Scholar 

  24. Durrer D, van Dam RT, Freud GE, Janse MJ, Meijler FL, Arzbaecher RC. Total excitation of the isolated human heart. Circulation. 1970;41:899–912.

    Article  CAS  PubMed  Google Scholar 

  25. Durrer D, Buller J, Graaff P, Lo GI, Meyler FL. Epicardial excitation pattern as observed in the isolated revived and perfused fetal human heart. Circ Res. 1961;9:29–38.

    Article  CAS  PubMed  Google Scholar 

  26. Durrer D, Formijne P, Van Dam RT, Buller J, Van Lier AAW, Meyler FL. The electrocardiogram in normal and some abnormal conditions. In revived human fetal heart and in acute and chronic coronary occlusion. Am Heart J. 1961;61:303–14.

    Article  CAS  PubMed  Google Scholar 

  27. Durrer D, Roos JP. Epicardial excitation of the ventricles in a patient with Wolff-Parkinson-White syndrome (type B). Circulation. 1967;35:15–21.

    Article  CAS  PubMed  Google Scholar 

  28. Burchell HB, Frye RL, Anderson MW, McGoon DC. Atrioventricular and ventriculoatrial excitation in Wolff-Parkinson-White syndrome (type B). Temporary ablation at surgery. Circulation. 1967;36:663–72.

    Article  CAS  PubMed  Google Scholar 

  29. Cobb FR, Blumenscheirn SD, Sealy WC, Boineau JP, Wagner GS, Wallace AG. Successful surgical interruption of the bundle of Kent in a patient with Wolff-Parkinson-White syndrome. Circulation. 1968;38:1018–29.

    Article  CAS  PubMed  Google Scholar 

  30. Sealy WC, Hattler BC, Blumenscheim SD, Cobb FR. Surgical treatment of the Wolff-Parkinson-White syndrome. Ann Thorac Surg. 1969;8:1–11.

    Article  CAS  PubMed  Google Scholar 

  31. Gallagher JJ, Gilbert M, Svenson RH, Sealy WC, Kasell JK, Wallace AG. Wolff-Parkinson-White syndrome. The problem, evaluation, and surgical correction. Circulation. 1975;51:767.

    Article  CAS  PubMed  Google Scholar 

  32. Kastor JA, Spear JF, Moore EN. Localization of ventricular irritability by epicardial mapping. Origin of digitalis-induced unifocal tachycardia from left ventricular Purkinje tissue. Circulation. 1972;45:952.

    Article  CAS  PubMed  Google Scholar 

  33. Gallagher JJ, Oldham HN, Wallace AG, Peter RH, Kasell J. Ventricular aneurysm with ventricular tachycardia. Report of a case with epicardial mapping and successful resection. Am J Cardiol. 1975;35:696.

    Article  CAS  PubMed  Google Scholar 

  34. Spurrell RAJ, Yates A, Thorburn CW, Lawton GE, Deuchar DC. Surgical treatment of ventricular tachycardia after epicardial mapping studies. Br Heart J. 1975;37:115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fontaine G, Guirandon G, Frank R, Coutte R, Dragodanne C. Epicardial mapping and surgical treatment in six cases of resistant ventricular tachycardia not related to coronary artery disease. In: Wellens HJJ, Lie KI, Janse MJ, editors. The conduction of the heart. Philadelphia: Lea and Febiger; 1976. p. 545–63.

    Google Scholar 

  36. Wittig JH, Boineau JP. Surgical treatment of ventricular arrhythmias using epicardial, transmural, and endocardial mapping. Ann Thorac Surg. 1975;20:117.

    Article  CAS  PubMed  Google Scholar 

  37. Durrer D, van Lier A, Bueller J. Epicardial and intramural excitation in chronic myocardial infarction. Am Heart J. 1964;68:765–76.

    Article  CAS  PubMed  Google Scholar 

  38. Josephson ME, Horowitz LN, Farshidi A, Spear JF, Kastor JA, Moore EN. Recurrent sustained ventricular tachycardia. 2. Endocardial mapping. Circulation. 1978;57:440–7.

    Article  CAS  PubMed  Google Scholar 

  39. Josephson ME, Horowitz LN, Spielman SR, Greenspan AM, VandePol C, Harken AH. Comparison of endocardial catheter mapping with intraoperative mapping of ventricular tachycardia. Circulation. 1980;61:395–404.

    Article  CAS  PubMed  Google Scholar 

  40. Horrowitz LN, Harken AH, Kastor JA, Josephson ME. Ventricular resection guided by epicardial and endocardial mapping for treat ment of recurrent ventricular tachycardia. N Engl J Med. 1980;302:589–93.

    Article  Google Scholar 

  41. Miller JM, Harken AH, Hargrove WC, Josephson ME. Pattern of endocardial activation during sustained ventricular tachycardia. J Am Coll Cardiol. 1985;6:1280–7.

    Article  CAS  PubMed  Google Scholar 

  42. Allessie MA, Bonke FIM, Schopman FJC. Circus movement in rabbit atrial muscle as a mechanism for tachycardia. Circ Res. 1973;33:54–62.

    Article  CAS  PubMed  Google Scholar 

  43. Allessie MA, Bonke FIM, Schopman FJC. Circus movement in rabbit atrial muscle as a mechanism for tachycardia. III. The leading circle concept. A new model of circus movement in cardiac tissue without the involvement of an anatomical obstacle. Circ Res. 1977;41:9–18.

    Article  CAS  PubMed  Google Scholar 

  44. Klein GJ, Guiraudon GM, Sharma AD, Milstein S. Demonstration of macroreentry and feasibility of operative therapy in the common type of atrial flutter. Am J Cardiol. 1986;57:587–91.

    Article  CAS  PubMed  Google Scholar 

  45. Hayden WGE, Hurley EJ, Rytand DA. The mechanism of canine atrial flutter. Circ Res. 1967;20:496–505.

    Article  CAS  PubMed  Google Scholar 

  46. Feld GK, Fleck RP, Chen PS, et al. Radiofrequency catheter ablation for the treatment of human type 1 atrial flutter. Identification of a critical zone in the reentrant circuit by endocardial mapping techniques. Circulation. 1992;86:1233–40.

    Article  CAS  PubMed  Google Scholar 

  47. Wit AL, Allessie MA, Bonke FIM, Lammers W, Smeets J, Fenoglio JJ Jr. Electrophysiologic mapping to determine the mechanism of experimental ventricular tachycardia initiated by premature impulses. Experimental approach and initial results demonstrating reentrant excitation. Am J Cardiol. 1982;49:166–85.

    Article  CAS  PubMed  Google Scholar 

  48. Klein GJ, Ideker RE, Smith WM, et al. Epicardial mapping of the onset of ventricular tachycardia initiated by programmed stimulation in the canine heart with chronic infarction. Circulation. 1979;60:1375–84.

    Article  CAS  PubMed  Google Scholar 

  49. de Bakker JMT, Henning B, Marx W. Circus movement in canine right ventricle. Circ Res. 1979;45:374–7.

    Article  PubMed  Google Scholar 

  50. de Bakker JM, Janse MJ, Van Capelle FJ, et al. Endocardial mapping by simultaneous recording of endocardial electrograms during cardiac surgery for ventricular aneurysm. J Am Coll Cardiol. 1983;2:947–53.

    Article  PubMed  Google Scholar 

  51. Ideker RE, Smith WM, Wallace AG, et al. A computerized method for the rapid display of ventricular activation during the intraoperative study of arrhythmias. Circulation. 1979;59:449–58.

    Article  CAS  PubMed  Google Scholar 

  52. Janse MJJ, van Capella FJL, Morsink H, et al. Flow of “injury” current and patterns of excitation during early ventricular arrhythmias in acute regional myocardial ischemia in isolated porcine and canine hearts: evidence for two different arrhythmogenic mechanisms. Circ Res. 1980;47:151–65.

    Article  CAS  PubMed  Google Scholar 

  53. El Sherif N, Smith RA, Evans K. Canine ventricular arrhythmias in the late myocardial infarction period. 8. Epicardial mapping of reentrant circuits. Circ Res. 1981;49:255–65.

    Article  PubMed  Google Scholar 

  54. Cardinal R, Savard P, Carson DL, Perry B, Page P. Mapping of ventricular tachycardia induced by programmed stimulation in canine preparations of myocardial infarction. Circulation. 1984;70:136–48.

    Article  CAS  PubMed  Google Scholar 

  55. Dillon SM, Allessie MA, Ursell PC, Wit AL. Influence of anisotropic tissue structure on reentrant circuits in the epicardial border zone of subacute canine infarcts. Circ Res. 1988;63:182–206.

    Article  CAS  PubMed  Google Scholar 

  56. Lee S, Sahadevan J, Khrestian CM, Durand DM, Waldo AL. High density mapping of atrial fibrillation during vagal nerve stimulation in the canine heart: restudying the Moe hypothesis. J Cardiovasc Electrophysiol. 2013;24:328–35.

    Article  PubMed  Google Scholar 

  57. Harrison L, Ideker RE, Smith WM, et al. The sock electrode array: a tool for determining global epicardial activation during unstable arrhythmias. Pacing Clin Electrophysiol. 1980;3:531.

    Article  CAS  PubMed  Google Scholar 

  58. Chen TCK, Parson ID, Downar E. The construction of endocardial balloon arrays for cardiac mapping. Pacing Clin Electrophysiol. 1991;14:470–9.

    Article  CAS  PubMed  Google Scholar 

  59. Waldo AL, MacLean WAH, Karp RB, Kouchoukos NT, James TN. Entrainment and interruption of atrial flutter with atrial pacing: studies in man following open heart surgery. Circulation. 1977;56:737–45.

    Article  CAS  PubMed  Google Scholar 

  60. Boineau JP, Schuessler RE, Mooney CR, et al. Naturally and evoked atrial flutter due to circus movement in dogs. Role of abnormal atrial pathways, slow conduction, nonuniform refractory period distribution and premature beats. Am J Cardiol. 1980;45:1167–81.

    Article  CAS  PubMed  Google Scholar 

  61. Mendler P, Parson I, Downar E. Multichannel recording of cardiac potentials. Med Biol Eng Comput. 1980;18:617.

    Article  CAS  PubMed  Google Scholar 

  62. Parson I, Mendler P, Downar E. On-line cardiac mapping: an analog approach using video and multiplexing techniques. Am J Physiol. 1982;242(4):H526–35.

    CAS  PubMed  Google Scholar 

  63. Downar E, Parson ID, Mickleborough LL, Cameron DA, Yao LC, Waxman MB. On-line epicardial mapping of intraoperative ventricular arrhythmias: initial clinical experience. J Am Coll Cardiol. 1984;4:703–14.

    Article  CAS  PubMed  Google Scholar 

  64. Downar E, Harris L, Mickleborough LL, Shaikh N, Parson ID. Endocardial mapping of ventricular tachycardia in the intact human ventricle: evidence for reentrant mechanisms. J Am Coll Cardiol. 1988;11:783–91.

    Article  CAS  PubMed  Google Scholar 

  65. Downar E, Kimber S, Harris L, Mickleborough L, Sevaptsidis E, Masse S, Chen TCK, Genga A. Endocardial mapping of ventricular tachycardia in the human heart. II. Evidence for multiuse reentry in a functional sheet of surviving myocardium. J Am Coll Cardiol. 1992;20:869–78.

    Article  CAS  PubMed  Google Scholar 

  66. De Bakker JMT, Coronel R, Tasseron S, Wilde AAM, Opthof T, Janse MJ, van Capelle F, Becker AE, Jambroes G. Ventricular tachycardia in the Langendorff-perfused human heart: role of the arrangement of surviving cardiac fibers. J Am Coll Cardiol. 1990;15:1594–607.

    Article  PubMed  Google Scholar 

  67. Josephson ME, Horowitz LN, Spielman SR, et al. Role of catheter mapping in the preoperative evaluation of ventricular tachycardia. Am J Cardiol. 1982;49:207–20.

    Article  CAS  PubMed  Google Scholar 

  68. Cassidy DM, Vassallo JA, Marchlinski FE, et al. Endocardial mapping in humans in sinus rhythm with normal left ventricles: activation patterns and characteristics of electrograms. Circulation. 1984;70:37–42.

    Article  CAS  PubMed  Google Scholar 

  69. Cassidy DM, Vassallo JA, Buxton AE, et al. The value of catheter mapping during sinus rhythm to localize site of origin of ventricular tachycardia. Circulation. 1984;69:1103–10.

    Article  CAS  PubMed  Google Scholar 

  70. MacLean WAH, Plumb VJ, Waldo AL. Transient entrainment and interruption of ventricular tachycardia. Pacing Clin Electrophysiol. 1981;4:358–66.

    Article  CAS  PubMed  Google Scholar 

  71. Waldo AL, Henthorn RW, Plumb VJ, et al. Demonstration of the mechanism of transient entrainment and interruption of ventricular tachycardia with rapid atrial pacing. J Am Coll Cardiol. 1984;3:422–30.

    Article  CAS  PubMed  Google Scholar 

  72. Waxman HL, Josephson ME. Ventricular activation during ventricular endocardial pacing. I. Electrocardiographic patterns related to the site of pacing. Am J Cardiol. 1982;50:1–10.

    Article  CAS  PubMed  Google Scholar 

  73. Josephson ME, Harken AH, Horowitz LN. Endocardial excision: a new surgical technique for the treatment of recurrent ventricular tachycardia. Circulation. 1979;60:1430–9.

    Article  CAS  PubMed  Google Scholar 

  74. Stevenson WG, Khan H, Sager P, et al. Identification of reentry circuit sites during catheter mapping and radiofrequency ablation of ventricular tachycardia late after myocardial infarction. Circulation. 1993;88:1647–70.

    Article  CAS  PubMed  Google Scholar 

  75. Stevenson WG, Friedman PL, Sager PT, et al. Exploring postinfarction reentrant ventricular tachycardia with entrainment mapping. J Am Coll Cardiol. 1997;29:1180–9.

    Article  CAS  PubMed  Google Scholar 

  76. Ben-Haim SA, Osadchy D, Schuster I, et al. Nonflucroscopic, in vivo navigation and mapping technology. Nat Med. 1996;2:1393–5. Gepstein L, Hayam G, Ben-Haim SA. A novel method for nonfluoroscopic catheter-based electroanatomical mapping of the heart. In vitro and in vivo accuracy results. Circulation. 1997;95:1611–22.

    Article  CAS  PubMed  Google Scholar 

  77. Sporton SC, Earley MJ, Nathan AW, Schilling RJ. Electroanatomic versus fluoroscopic mapping for catheter ablation procedures: a prospective randomized study. J Cardiovasc Electrophysiol. 2004;15(3):310–5.

    Article  PubMed  Google Scholar 

  78. Earley M, Showkathali R, Alzetani M, et al. Radiofrequency ablation of arrhythmias guided by non-fluoroscopic catheter location: a prospective randomized trial. Eur Heart J. 2006;27:1223–9.

    Article  PubMed  Google Scholar 

  79. Estner H, Deisenhofer I, Luik A, et al. Electrical isolation of pulmonary veins in patients with atrial fibrillation: reduction of fluoroscopy exposure and procedure duration by the use of a non-fluoroscopic navigation system (NavX). Europace. 2006;8:583–7.

    Article  PubMed  Google Scholar 

  80. Reddy VY, Malchano ZJ, Holmvang G, Schmidt EJ, D’Avila A, Houghtaling C, et al. Integration of cardiac magnetic resonance imaging with three-dimensional electroanatomic mapping to guide left ventricular catheter manipulation: feasibility in a porcine model of healed myocardial infarction. J Am Coll Cardiol. 2004;44:2202–13.

    Article  PubMed  Google Scholar 

  81. Verma A, Marrouche N, Natale A. Novel method to integrate three-dimensional computed tomographic images of the left atrium with real-time electroanatomic mapping. J Cardiovasc Electrophysiol. 2004;15:968.

    Article  PubMed  Google Scholar 

  82. Ptaszek LM, Chalhoub F, Perna F, et al. Rapid acquisition of high-resolution electroanatomical maps using a novel multielectrode mapping system. J Interv Card Electrophysiol. 2013;36:233–42.

    Article  PubMed  Google Scholar 

  83. Gray RA, Pertsov AM, Jalife J. Spatial and temporal organization during cardiac fibrillation. Nature. 1998;392(6671):75–8.

    Article  CAS  PubMed  Google Scholar 

  84. Narayan SM, Krummen DE, Clopton P, Shivkumar K, Miller JM. Direct or coincidental elimination of stable rotors or focal sources may explain successful atrial fibrillation ablation: on-treatment analysis of the CONFIRM trial (Conventional Ablation for AF With or Without Focal Impulse and Rotor Modulation). J Am Coll Cardiol. 2013;62(2):138–47.

    Article  PubMed  PubMed Central  Google Scholar 

  85. de Groot NM, Houben RP, Smeets JL, et al. Electropathological substrate of longstanding persistent atrial fibrillation in patients with structural heart disease: epicardial breakthrough. Circulation. 2010;122:1674–82.

    Article  PubMed  Google Scholar 

  86. Lau DH, Maesen B, Zeemering S, et al. Indices of bipolar complex fractionated atrial electrograms correlate poorly with each other and atrial fibrillation substrate complexity. Heart Rhythm. 2015;12:1415–23.

    Article  PubMed  Google Scholar 

  87. Walters TE, Lee G, Morris G, et al. Temporal stability of rotors and atrial activation patterns in persistent human atrial fibrillation: a high-density epicardial mapping study of prolonged recordings. JACC Clin Electrophysiol. 2015;1:14–24.

    Article  PubMed  Google Scholar 

  88. Lee S, Sahadevan J, Khrestian CM, Cakulev I, Markowitz A, Waldo AL. Simultaneous bi-atrial high density (510–512 electrodes) epicardial mapping of persistent and long-standing persistent atrial fibrillation in patients: new insights into the mechanism of its maintenance. Circulation. 2015;132:2108–17.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Cuculich PS, Wang Y, Lindsay BD, et al. Noninvasive characterization of epicardial activation in humans with diverse atrial fibrillation patterns. Circulation. 2010;122(14):1364–72.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Haïssaguerre M, Hocini M, Shah AJ, et al. Noninvasive panoramic mapping of human atrial fibrillation mechanisms: a feasibility report. J Cardiovasc Electrophysiol. 2013;24(6):711–7.

    Article  PubMed  Google Scholar 

  91. Haïssaguerre M, Hocini M, Denis A, et al. Driver domains in persistent atrial fibrillation. Circulation. 2014;130(7):530–8.

    Article  PubMed  Google Scholar 

  92. Waller AD. On the electromotive changes connected with the beat of the mammalian heart and of the human heart in particular. Philos Trans R Soc Lond (Biol). 1889;180:169–94.

    Google Scholar 

  93. Nahum LH, Mauro A, Chernoff HM, Sikand RS. Instantaneous equipotential distribution on surface of the human body for various instants in the cardiac cycle. J Appl Physiol. 1951;3:454–64.

    Article  CAS  PubMed  Google Scholar 

  94. Spach MS, Barr RC. Ventricular intramural and epicardial potential distributions during ventricular activation and repolarization in the intact dog. Circ Res. 1975;37:243–57.

    Article  CAS  PubMed  Google Scholar 

  95. Spach MS, Barr RC, Lanning CF. Experimental basis for ORS and T wave potentials in the WPW syndrome. The relation of epicardial to body surface potential distributions in the intact chimpanzee. Circ Res. 1978;42:103–18.

    Article  CAS  PubMed  Google Scholar 

  96. Barr RC, Spach MS. Inverse calculation of QRS-T epicardial potentials from body surface potential distributions for normal and ectopic beats in the intact dog. Circ Res. 1978;42:661–75.

    Article  CAS  PubMed  Google Scholar 

  97. Plonsey R, Barr RC. Bioelectricity—a quantitative approach. 3rd ed. New York: Springer; 2007.

    Google Scholar 

  98. Barr RC, Ramsey M III, Spach MS. Relating epicardial to body surface potential distributions by means of transfer coefficients based on geometry measurements. IEEE Trans Biomed Eng. 1977;24(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  99. Franzone PC, Taccardi B, Viganotti C. An approach to inverse calculation of epicardial potentials from body surface maps. Adv Cardiol. 1978;21:50–4.

    Article  CAS  PubMed  Google Scholar 

  100. Tikhonov AN, Arsenin VY. Solution of ill-posed problems. New York: Wiley; 1977.

    Google Scholar 

  101. Colli Franzone P, Guerri L, Taccardi B, Viganotti C. The direct and inverse potential problems in electrocardiology: numerical aspects of some regularization methods and application to data collected in isolated dog heart experiments. Publ. No. 222 I.A.N.-C.N.R., Pavia; 1979:1–82.

    Google Scholar 

  102. Rudy Y. Noninvasive electrocardiographic imaging of arrhythmogenic substrates in humans. Circ Res. 2013;112:863–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Oster HS, Taccardi B, Lux RL, Ershler PR, Rudy Y. Electrocardiographic imaging: noninvasive characterization of intramural myocardial activation from inverse reconstructed epicardial potentials and electrograms. Circulation. 1998;97:1496–507.

    Article  CAS  PubMed  Google Scholar 

  104. Ghanem RN, Jia P, Ramanathan C, Ryu K, Markowitz A, Rudy Y. Noninvasive electrocardiographic imaging (ECGI): comparison to intraoperative mapping in patients. Heart Rhythm. 2005;2:339–54.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Intini A, Goldstein RN, Jia P, Ramanathan C, Ryu K, Giannattasio B, Gilkeson R, Stambler BS, Brugada P, Stevenson WG, Rudy Y, Waldo AL. Electrocardiographic imaging (ECGI), a novel diagnostic modality for mapping of focal left ventricular tachycardia in a young athlete. Heart Rhythm. 2005;2:1250–2.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Jia P, Ramanathan C, Ghanem RN, Ryu K, Varma N, Rudy Y. Electrocardiographic imaging of cardiac resynchronization therapy in heart failure: observations of variable electrophysiologic responses. Heart Rhythm. 2006;3:296–310.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Cuculich PS, Zhang J, Wang Y, Desouza KA, Vijayakumar R, Woodard PK, Rudy Y. The electrophysiologic cardiac ventricular substrate in patients after myocardial infarction: noninvasive characterization with electrocardiographic imaging. J Am Coll Cardiol. 2011;58:1893–902.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Wang Y, Cuculich PS, Zhang J, Desouza KA, Vijayakumar R, Chen J, Faddis MN, Lindsay BD, Smith TW, Rudy Y. Noninvasive electroanatomic mapping of human ventricular arrhythmias with electrocardiographic imaging. Sci Transl Med. 2011;3:191–200.

    Article  CAS  Google Scholar 

  109. Cuculich PS, Schill MR, Kashani R. Noninvasive cardiac radiation for ablation of ventricular tachycardia. N Engl J Med. 2017;377:2325–36.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Gornick C, Adler S, Pederson B, et al. Validation of a new noncontact catheter system for electroanatomic mapping of left ventricular endocardium. Circulation. 1999;99:829–35.

    Article  CAS  PubMed  Google Scholar 

  111. Schilling RJ, Peters NS, Davies DW. Simultaneous endocardial mapping in the human left ventricle using a noncontact catheter: comparison of contact and reconstructed electrograms during sinus rhythm. Circulation. 1998;98:887–98.

    Article  CAS  PubMed  Google Scholar 

  112. Chow AWC, Schilling RJ, Wyn Davies D, Peters NS. Characteristics of wavefront propagation in reentrant circuits causing human ventricular tachycardia. Circulation. 2002;105:2172–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert L. Waldo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cakulev, I., Wit, A.L., Waldo, A.L. (2021). The History of Mapping. In: Efimov, I.R., Ng, F.S., Laughner, J.I. (eds) Cardiac Bioelectric Therapy. Springer, Cham. https://doi.org/10.1007/978-3-030-63355-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63355-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63354-7

  • Online ISBN: 978-3-030-63355-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics