Skip to main content

The Virtual Electrode Hypothesis of Defibrillation

  • Chapter
  • First Online:
Cardiac Bioelectric Therapy

Abstract

Despite significant research efforts of investigators in academia, medicine, and the pharmaceutical industry, no effective pharmacological alternative to defibrillation by electric shock has been developed. Thus, defibrillation has evolved to become the only effective therapy against sudden cardiac death. Highly detailed knowledge of ion channel biophysics and cell signaling cascades has allowed for the development of numerous specific agonists and antagonists, but as of now has failed to deliver safe and effective antiarrhythmic therapy. In contrast to this approach, electrotherapy is steadily improving its efficacy and safety.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al Khadra A, Nikolski V, Efimov IR. The role of electroporation in defibrillation. Circ Res. 2000;87(9):797–804.

    Article  Google Scholar 

  2. Kodama I, Shibata N, Sakuma I, Mitsui K, Iida M, Suzuki R, Fukui Y, Hosoda S, Toyama J. Aftereffects of high-intensity DC stimulation on the electromechanical performance of ventricular muscle. Am J Phys. 1994;267(1 Pt 2):H248–58.

    CAS  Google Scholar 

  3. Neunlist M, Tung L. Dose-dependent reduction of cardiac transmembrane potential by high-intensity electrical shocks. Am J Phys. 1997;273(6 Pt 2):H2817–25.

    CAS  Google Scholar 

  4. Godemann F, Butter C, Lampe F, Linden M, Schlegl M, Schultheiss HP, Behrens S. Panic disorders and agoraphobia: side effects of treatment with an implantable cardioverter/defibrillator. Clin Cardiol. 2004;27(6):321–6.

    Article  PubMed  Google Scholar 

  5. Kamphuis HC, de Leeuw JR, Derksen R, Hauer RN, Winnubst JA. Implantable cardioverter defibrillator recipients: quality of life in recipients with and without ICD shock delivery: a prospective study. Europace. 2003;5(4):381–9.

    Article  CAS  PubMed  Google Scholar 

  6. Fye WB. Ventricular fibrillation and defibrillation: historical perspectives with emphasis on the contributions of John MacWilliam, Carl Wiggers, and William Kouwenhoven. Circulation. 1985;71(5):858–65.

    Article  CAS  PubMed  Google Scholar 

  7. Prevost JL, Battelli F. Sur quel ques effets des dechanges electriques sur le coer mammifres. C R Seances Acad Sci. 1899;129:1267.

    Google Scholar 

  8. Gurvich NL, Yuniev GS. Restoration of regular rhythm in the mammalian fibrillating heart. Am Rev Sov Med. 1946;3:236–9.

    CAS  PubMed  Google Scholar 

  9. Beck CS, Pritchard WH, Feil HS. Ventricular fibrillation of long duration abolished by electric shock. JAMA. 1947;135:985.

    Article  CAS  Google Scholar 

  10. Zoll PM, Linethal AJ, Gibson W, et al. Termination of ventricular fibrillation in man by externally applied electric shock. N Engl J Med. 1956;254:727.

    Article  CAS  PubMed  Google Scholar 

  11. Kouwenhoven WB, Milnor WR. Treatment of ventricular fibrillation using a capacitor discharge. J Appl Physiol. 1954;7(3):253–7.

    Article  CAS  PubMed  Google Scholar 

  12. Lown B, Neuman J, Amarasingham R, Berkovits BV. Comparison of alternating current with direct electroshock across the closed chest. Am J Cardiol. 1962;10:223–33.

    Article  CAS  PubMed  Google Scholar 

  13. Gurvich NL. The Main principles of cardiac defibrillation. Moscow: Medicine; 1975.

    Google Scholar 

  14. Mirowski M, Mower MM, Reid PR. The automatic implantable defibrillator. Am Heart J. 1980;100(6 Pt 2):1089–92.

    Article  CAS  PubMed  Google Scholar 

  15. Mirowski M, Reid PR, Mower MM, Watkins L, Gott VL, Schauble JF, Langer A, Heilman MS, Kolenik SA, Fischell RE, Weisfeldt ML. Termination of malignant ventricular arrhythmias with an implanted automatic defibrillator in human beings. N Engl J Med. 1980;303(6):322–4.

    Article  CAS  PubMed  Google Scholar 

  16. Tung L. A Bidomain model for describing ischemia myocardial DC potentials. Cambridge, MA: Massachusetts Institute of Technology; 1978.

    Google Scholar 

  17. Henriquez CS. Simulating the electrical behavior of cardiac tissue using the bidomain model. Crit Rev Biomed Eng. 1993;21(1):1–77.

    CAS  PubMed  Google Scholar 

  18. Skouibine K, Trayanova N, Moore P. A numerically efficient model for simulation of defibrillation in an active bidomain sheet of myocardium. Math Biosci. 2000;166(1):85–100.

    Article  CAS  PubMed  Google Scholar 

  19. Krassowska W. Effects of electroporation on transmembrane potential induced by defibrillation shocks. Pacing Clin Electrophysiol. 1995;18(9 Pt 1):1644–60.

    Article  CAS  PubMed  Google Scholar 

  20. Beeler GW, Reuter H. Reconstruction of the action potential of ventricular myocardial fibres. J Physiol Lond. 1977;268(1):177–210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Drouhard JP, Roberge FA. A simulation study of the ventricular myocardial action potential. IEEE Trans Biomed Eng. 1982;29(7):494–502.

    Article  CAS  PubMed  Google Scholar 

  22. Luo CH, Rudy Y. A model of the ventricular cardiac action potential. Depolarization, repolarization, and their interaction. Circ Res. 1991;68(6):1501–26.

    Article  CAS  PubMed  Google Scholar 

  23. Luo CH, Rudy Y. A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes. Circ Res. 1994;74(6):1071–96.

    Article  CAS  PubMed  Google Scholar 

  24. Hund TJ, Rudy Y. Rate dependence and regulation of action potential and calcium transient in a canine cardiac ventricular cell model. Circulation. 2004;110(20):3168–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hodgkin AL, Huxley AF. Propagation of electrical signals along giant nerve fibers. Proc R Soc Lond B Biol Sci. 1952;140(899):177–83.

    Article  CAS  PubMed  Google Scholar 

  26. Cohen LB, Lesher S, De Weer P, Salzberg BM. Optical monitoring of membrane potential: methods of multisite optical measurement. In: Optical methods in cell physiology. New York: Wiley-Interscience; 1986. p. 71–100.

    Google Scholar 

  27. Davila HV, Salzberg BM, Cohen LB, Waggoner AS. A large change in axon fluorescence that provides a promising method for measuring membrane potential. Nat New Biol. 1973;241(109):159–60.

    Article  CAS  PubMed  Google Scholar 

  28. Salama G, Morad M. Merocyanine 540 as an optical probe of transmembrane electrical activity in the heart. Science. 1976;191(4226):485–7.

    Article  CAS  PubMed  Google Scholar 

  29. Morad M, Salama G. Optical probes of membrane potential in heart muscle. J Physiol Lond. 1979;292:267–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ross WN, Salzberg BM, Cohen LB, Grinvald A, Davila HV, Waggoner AS, Wang CH. Changes in absorption, fluorescence, dichroism, and birefringence in stained giant axons: optical measurement of membrane potential. J Membr Biol. 1977;33(1–2):141–83.

    Article  CAS  PubMed  Google Scholar 

  31. Salama G, Loew LM. Optical measurements of transmembrane potential in heart. In: Spectroscopic membrane probes. Boca Raton, FL: CRC; 1988. p. 137–99.

    Google Scholar 

  32. Dillon S, Morad M. A new laser scanning system for measuring action potential propagation in the heart. Science. 1981;214(4519):453–6.

    Article  CAS  PubMed  Google Scholar 

  33. Kodama I, Sakuma I, Shibata N, Knisley SB, Niwa R, Honjo H. Regional differences in arrhythmogenic aftereffects of high intensity DC stimulation in the ventricles. Pacing Clin Electrophysiol. 2000;23(5):807–17.

    Article  CAS  PubMed  Google Scholar 

  34. Entcheva E, Kostov Y, Tchernev E, Tung L. Fluorescence imaging of electrical activity in cardiac cells using an all-solid-state system. IEEE Trans Biomed Eng. 2004;51(2):333–41.

    Article  PubMed  Google Scholar 

  35. Amino M, Yamazaki M, Nakagawa H, Honjo H, Okuno Y, Yoshioka K, Tanabe T, Yasui K, Lee JK, Horiba M, Kamiya K, Kodama I. Combined effects of nifekalant and lidocaine on the spiral-type re-entry in a perfused 2-dimensional layer of rabbit ventricular myocardium. Circ J. 2005;69(5):576–84.

    Article  CAS  PubMed  Google Scholar 

  36. Bray MA, Lin SF, Wikswo JP. Panoramic epifluorescent visualization of cardiac action potential activity. Proc SPIE. 1999;3658:99–107.

    Article  Google Scholar 

  37. Lin SF, Wikswo JP. Panoramic optical imaging of electrical propagation in isolated heart. J Biomed Opt. 1999;4(2):200–7.

    Article  CAS  PubMed  Google Scholar 

  38. Bray MA, Lin SF, Wikswo J. Three-dimensional visualization of phase singularities on the isolated rabbit heart. J Cardiovasc Electrophysiol. 2002;13(12):1311.

    Article  PubMed  Google Scholar 

  39. Kay MW, Amison PM, Rogers JM. Three-dimensional surface reconstruction and panoramic optical mapping of large hearts. IEEE Trans Biomed Eng. 2004;51(7):1219–29.

    Article  PubMed  Google Scholar 

  40. Qu F, Ripplinger CM, Nikolski VP, Grimm C, Efimov IR. Three dimensional panoramic imaging of cardiac arrhythmias in the rabbit heart. J Biomed Opt. 2007;12(4):044019.

    Article  PubMed  Google Scholar 

  41. Furman S, Hurzeler P, Parker B. Clinical thresholds of endocardial cardiac stimulation: a long-term study. J Surg Res. 1975;19:149–55.

    Article  CAS  PubMed  Google Scholar 

  42. Rattay F. Analysis of models for extracellular fiber stimulation. IEEE Trans Biomed Eng. 1989;36(7):676–82.

    Article  CAS  PubMed  Google Scholar 

  43. Sobie EA, Susil RC, Tung L. A generalized activating function for predicting virtual electrodes in cardiac tissue. Biophys J. 1997;73(3):1410–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sepulveda NG, Roth BJ, Wikswo JP. Current injection into a two-dimensional anisotropic bidomain. Biophys J. 1989;55(5):987–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wikswo JP, Lin SF, Abbas RA. Virtual electrodes in cardiac tissue: a common mechanism for anodal and cathodal stimulation. Biophys J. 1995;69(6):2195–210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fast VG, Rohr S, Gillis AM, Kleber AG. Activation of cardiac tissue by extracellular electrical shocks: formation of ‘secondary sources’ at intercellular clefts in monolayers of cultured myocytes. Circ Res. 1998;82(3):375–85.

    Article  CAS  PubMed  Google Scholar 

  47. Trayanova N, Skouibine K, Aguel F. The role of cardiac tissue structure in defibrillation. Chaos. 1998;8(1):221–33.

    Article  PubMed  Google Scholar 

  48. Gurvich NL, Yuniev GS. Restoration of regular rhythm in the mammalian fibrillating heart. Byull Eksper Biol Med. 1939;8(1):55–8.

    Google Scholar 

  49. Zipes DP, Fischer J, King RM, Nicoll AD, Jolly WW. Termination of ventricular fibrillation in dogs by depolarizing a critical amount of myocardium. Am J Cardiol. 1975;36(1):37–44.

    Article  CAS  PubMed  Google Scholar 

  50. Witkowski FX, Penkoske PA, Plonsey R. Mechanism of cardiac defibrillation in open-chest dogs with unipolar DC-coupled simultaneous activation and shock potential recordings. Circulation. 1990;82(1):244–60.

    Article  CAS  PubMed  Google Scholar 

  51. Krinskii VI, Fomin SV, Kholopov AV. Critical mass during fibrillation. Biofizika. 1967;12(5):908–14.

    CAS  PubMed  Google Scholar 

  52. Fabiato A, Coumel P, Gourgon R, Saumont R. The threshold of synchronous response of the myocardial fibers. Application to the experimental comparison of the efficacy of different forms of electroshock defibrillation. Arch Mal Coeur Vaiss. 1967;60(4):527–44.

    CAS  PubMed  Google Scholar 

  53. Chen PS, Shibata N, Dixon EG, Martin RO, Ideker RE. Comparison of the defibrillation threshold and the upper limit of ventricular vulnerability. Circulation. 1986;73(5):1022–8.

    Article  CAS  PubMed  Google Scholar 

  54. Shibata N, Chen PS, Dixon EG, Wolf PD, Danieley ND, Smith WM, Ideker RE. Influence of shock strength and timing on induction of ventricular arrhythmias in dogs. Am J Phys. 1988;255(4 Pt 2):H891–901.

    CAS  Google Scholar 

  55. Fabritz CL, Kirchhof PF, Behrens S, Zabel M, Franz MR. Myocardial vulnerability to T wave shocks: relation to shock strength, shock coupling interval, and dispersion of ventricular repolarization. J Cardiovasc Electrophysiol. 1996;7(3):231–42.

    Article  CAS  PubMed  Google Scholar 

  56. Chen PS, Feld GK, Kriett JM, Mower MM, Tarazi RY, Fleck RP, Swerdlow CD, Gang ES, Kass RM. Relation between upper limit of vulnerability and defibrillation threshold in humans. Circulation. 1993;88(1):186–92.

    Article  CAS  PubMed  Google Scholar 

  57. Hwang C, Swerdlow CD, Kass RM, Gang ES, Mandel WJ, Peter CT, Chen PS. Upper limit of vulnerability reliably predicts the defibrillation threshold in humans. Circulation. 1994;90(5):2308–14.

    Article  CAS  PubMed  Google Scholar 

  58. Wiener N, Rosenblueth A. The mathematical formulation of the problem of conduction of impulses in a network of connected excitable elements, specifically in cardiac muscle. Arch Inst Cardiol Mexico. 1946;16(3–4):205–65.

    CAS  PubMed  Google Scholar 

  59. Frazier DW, Wolf PD, Wharton JM, Tang AS, Smith WM, Ideker RE. Stimulus-induced critical point. Mechanism for electrical initiation of reentry in normal canine myocardium. J Clin Invest. 1989;83(3):1039–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Walcott GP, Walcott KT, Knisley SB, Zhou X, Ideker RE. Mechanisms of defibrillation for monophasic and biphasic waveforms. Pacing Clin Electrophysiol. 1994;17(3 Pt 2):478–98.

    Article  CAS  PubMed  Google Scholar 

  61. Walcott GP, Walcott KT, Ideker RE. Mechanisms of defibrillation. Critical points and the upper limit of vulnerability. J Electrocardiol. 1995;28(Suppl):1–6.

    Article  PubMed  Google Scholar 

  62. Dillon SM, Kwaku KF. Progressive depolarization: a unified hypothesis for defibrillation and fibrillation induction by shocks. J Cardiovasc Electrophysiol. 1998;9(5):529–52.

    Article  CAS  PubMed  Google Scholar 

  63. Roth BJ. A mathematical model of make and break electrical stimulation of cardiac tissue by a unipolar anode or cathode. IEEE Trans Biomed Eng. 1995;42(12):1174–84.

    Article  CAS  PubMed  Google Scholar 

  64. Knisley SB, Hill BC, Ideker RE. Virtual electrode effects in myocardial fibers. Biophys J. 1994;66(3 Pt 1):719–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Neunlist M, Tung L. Spatial distribution of cardiac transmembrane potentials around an extracellular electrode: dependence on fiber orientation. Biophys J. 1995;68(6):2310–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Efimov IR, Cheng YN, Biermann M, Van Wagoner DR, Mazgalev T, Tchou PJ. Transmembrane voltage changes produced by real and virtual electrodes during monophasic defibrillation shock delivered by an implantable electrode. J Cardiovasc Electrophysiol. 1997;8:1031–45.

    Article  CAS  PubMed  Google Scholar 

  67. Efimov IR, Cheng Y, Van Wagoner DR, Mazgalev T, Tchou PJ. Virtual electrode-induced phase singularity: a basic mechanism of defibrillation failure. Circ Res. 1998;82(8):918–25.

    Article  CAS  PubMed  Google Scholar 

  68. Efimov IR, Gray RA, Roth BJ. Virtual electrodes and de-excitation: new insights into fibrillation induction and defibrillation. J Cardiovasc Electrophysiol. 2000;11(3):339–53.

    Article  CAS  PubMed  Google Scholar 

  69. Cheng Y, Mowrey KA, Van Wagoner DR, Tchou PJ, Efimov IR. Virtual electrode induced re-excitation: a basic mechanism of defibrillation. Circ Res. 1999;85(11):1056–66.

    Article  CAS  PubMed  Google Scholar 

  70. Hoffa M, Ludwig C. Einige neue Versuche uber Herzbewegung. Zeitschrift Rationelle Medizin. 1850;9:107–44.

    Google Scholar 

  71. Skouibine K, Trayanova NA, Moore P. Anode/cathode make and break phenomena in a model of defibrillation. IEEE Trans Biomed Eng. 1999;46(7):769–77.

    Article  CAS  PubMed  Google Scholar 

  72. Lin SF, Roth BJ, Wikswo JP. Quatrefoil reentry in myocardium: an optical imaging study of the induction mechanism. J Cardiovasc Electrophysiol. 1999;10:574–86.

    Article  CAS  PubMed  Google Scholar 

  73. Winfree AT. When time breaks down: the three-dimensional dynamics of electrochemical waves and cardiac arrhythmias. Princeton: Princeton University Press; 1987.

    Google Scholar 

  74. Cheng Y, Van Wagoner D, Tchou PJ, Efimov IR. Defibrillation shock-induced waves of re-excitation: implications to upper and lower limits of vulnerability. PACE. 1999;22(4(II)):809.

    Google Scholar 

  75. Cheng Y, Nikolski V, Efimov IR. Reversal of repolarization gradient does not reverse the chirality of shock-induced reentry in the rabbit heart. J Cardiovasc Electrophysiol. 2000;11(9):998–1007.

    Article  CAS  PubMed  Google Scholar 

  76. Efimov IR, Cheng Y, Yamanouchi Y, Tchou PJ. Direct evidence of the role of virtual electrode induced phase singularity in success and failure of defibrillation. J Cardiovasc Electrophysiol. 2000;11(8):861–8.

    Article  CAS  PubMed  Google Scholar 

  77. Jones JL, Jones RE, Balasky G. Microlesion formation in myocardial cells by high-intensity electric field stimulation. Am J Phys. 1987;253(2 Pt 2):H480–6.

    CAS  Google Scholar 

  78. Nikolski VP, Sambelashvili AT, Krinsky VI, Efimov IR. Effects of electroporation on optically recorded transmembrane potential responses to high-intensity electrical shocks. Am J Physiol Heart Circ Physiol. 2004;286(1):H412–8.

    Article  CAS  PubMed  Google Scholar 

  79. Yamanouchi Y, Cheng Y, Tchou PJ, Efimov IR. The mechanisms of vulnerable window: the role of virtual electrodes and shock polarity. Can J Physiol Pharmacol. 2001;79(1):25–33.

    Article  CAS  PubMed  Google Scholar 

  80. Kroll MW, Efimov IR, Tchou PJ. Present understanding of shock polarity for internal defibrillation: the obvious and non-obvious clinical implications. Pacing Clin Electrophysiol. 2006;29(8):885–91.

    Article  PubMed  Google Scholar 

  81. Chapman PD, Vetter JW, Souza JJ, Troup PJ, Wetherbee JN, Hoffmann RG. Comparative efficacy of monophasic and biphasic truncated exponential shocks for nontho-racotomy internal defibrillation in dogs. J Am Coll Cardiol. 1988;12(3):739–45.

    Article  CAS  PubMed  Google Scholar 

  82. Feeser SA, Tang AS, Kavanagh KM, Rollins DL, Smith WM, Wolf PD, Ideker RE. Strength-duration and probability of success curves for defibrillation with biphasic waveforms. Circulation. 1990;82(6):2128–41.

    Article  CAS  PubMed  Google Scholar 

  83. Qu F, Li L, Nikolski VP, Sharma V, Efimov IR. Mechanisms of superiority of ascending ramp waveforms: new insights into mechanisms of shock-induced vulnerability and defibrillation. Am J Physiol Heart Circ Physiol. 2005;289(2):H569–77.

    Article  CAS  PubMed  Google Scholar 

  84. Takagi S, Pumir A, Pazo D, Efimov I, Nikolski V, Krinsky V. Unpinning and removal of a rotating wave in cardiac muscle. Phys Rev Lett. 2004;93(5):058101.

    Article  CAS  PubMed  Google Scholar 

  85. Ripplinger CM, Krinsky VI, Nikolski VP, Efimov IR. Mechanisms of unpinning and termination of ventricular tachycardia. Am J Physiol Heart Circ Physiol. 2006;291(1):H184–92.

    Article  CAS  PubMed  Google Scholar 

  86. Fedorov VV, Schuessler RB, Lall S, Ripplinger CM, Sakamoto S, Efimov IR. Low voltage defibrillation of sustained ventricular tachycardia in infarcted canine hearts. Heart Rhythm. 2007;4(5S):S171.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor R. Efimov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ripplinger, C.M., Efimov, I.R. (2021). The Virtual Electrode Hypothesis of Defibrillation. In: Efimov, I.R., Ng, F.S., Laughner, J.I. (eds) Cardiac Bioelectric Therapy. Springer, Cham. https://doi.org/10.1007/978-3-030-63355-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63355-4_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63354-7

  • Online ISBN: 978-3-030-63355-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics