Skip to main content

The Role of Microscopic Tissue Structure in Defibrillation

  • Chapter
  • First Online:
Cardiac Bioelectric Therapy

Abstract

Extracellular field shocks are applied between two extracellular electrodes placed on the body’s surface to convert ventricular fibrillation to sino-atrial rhythm. The basic question about the underlying mechanism relates to how electrical current flowing primarily through the extracellular space will flow across the cell membranes and affect the transmembrane potential of underlying cells. Experimental studies in whole hearts and cell cultures have shown that myocytes within the heart – at sites forming so-called virtual electrodes – can affect the shape of the action potential and/or excite the heart, and thereby interrupt reentrant circles and stop fibrillation. Small resistive obstacles formed by connective tissue or blood vessels in the order of few hundred micrometers in length may suffice to interrupt fibrillatory propagation. Overall, the connective tissue network, especially if it becomes more expressed in disease states or during evolving age, plays an important role in defibrillation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beck CS, Pritchard WH, Feil HS. Ventricular fibrillation of long duration abolished by electric shock. J Am Med Assoc. 1947;135:985.

    Article  CAS  Google Scholar 

  2. Dosdall DJ, Fast VG, Ideker RE. Mechanisms of defibrillation. Annu Rev Biomed Eng. 2010;12:233–58.

    Article  CAS  Google Scholar 

  3. Dillon S, Morad M. A new laser scanning system for measuring action potential propagation in the heart. Science. 1981;214:453–6.

    Article  CAS  Google Scholar 

  4. Dillon SM. Optical recordings in the rabbit heart show that defibrillation strength shocks prolong the duration of depolarization and the refractory period. Circ Res. 1991;69:842–56.

    Article  CAS  Google Scholar 

  5. Weidmann S. Electrical constants of trabecular muscle from mammalian heart. J Physiol. 1970;210:1041–54.

    Article  CAS  Google Scholar 

  6. Kleber AG, Riegger CB. Electrical constants of arterially perfused rabbit papillary muscle. J Physiol. 1987;385:307–24.

    Article  CAS  Google Scholar 

  7. Kondratyev AA, Didon JP, Hinnen-Oberer H, Lemay M, Kucera JP, Kleber AG. Virtual sources and sinks during extracellular field shocks in cardiac cell cultures: effects of source-sink interactions between adjacent tissue boundaries. Circ Arrhythm Electrophysiol. 2012;5:391–9.

    Article  Google Scholar 

  8. Fleischhauer J, Lehmann L, Kleber AG. Electrical resistances of interstitial and microvascular space as determinants of the extracellular electrical field and velocity of propagation in ventricular myocardium. Circulation. 1995;92:587–94.

    Article  CAS  Google Scholar 

  9. Hoyt RH, Cohen ML, Saffitz JE. Distribution and three-dimensional structure of intercellular junctions in canine myocardium. Circ Res. 1989;64:563–74.

    Article  CAS  Google Scholar 

  10. Saffitz JE, Hoyt RH, Luke RA, Lee Kanter H, Beyer EC. Cardiac myocyte interconnections at gap junctions role in normal and abnormal electrical conduction. Trends Cardiovasc Med. 1992;2:56–60.

    Article  CAS  Google Scholar 

  11. Hooks DA, Trew ML, Caldwell BJ, Sands GB, LeGrice IJ, Smaill BH. Laminar arrangement of ventricular myocytes influences electrical behavior of the heart. Circ Res. 2007;101:e103–12.

    Article  CAS  Google Scholar 

  12. LeGrice IJ, Smaill BH, Chai LZ, Edgar SG, Gavin JB, Hunter PJ. Laminar structure of the heart: ventricular myocyte arrangement and connective tissue architecture in the dog. Am J Phys. 1995;269:H571–82.

    CAS  Google Scholar 

  13. Pope AJ, Sands GB, Smaill BH, LeGrice IJ. Three-dimensional transmural organization of perimysial collagen in the heart. Am J Phys. 2008;295:H1243–52.

    CAS  Google Scholar 

  14. Streeter DD Jr, Spotnitz HM, Patel DP, Ross J Jr, Sonnenblick EH. Fiber orientation in the canine left ventricle during diastole and systole. Circ Res. 1969;24:339–47.

    Article  Google Scholar 

  15. Hyatt CJ, Mironov SF, Vetter FJ, Zemlin CW, Pertsov AM. Optical action potential upstroke morphology reveals near-surface transmural propagation direction. Circ Res. 2005;97:277–84.

    Article  CAS  Google Scholar 

  16. Spach MS, Miller WT 3rd, Dolber PC, Kootsey JM, Sommer JR, Mosher CE Jr. The functional role of structural complexities in the propagation of depolarization in the atrium of the dog. Cardiac conduction disturbances due to discontinuities of effective axial resistivity. Circ Res. 1982;50:175–91.

    Article  CAS  Google Scholar 

  17. Travers JG, Kamal FA, Robbins J, Yutzey KE, Blaxall BC. Cardiac fibrosis: the fibroblast awakens. Circ Res. 2016;118:1021–40.

    Article  CAS  Google Scholar 

  18. Rutherford SL, Trew ML, Sands GB, LeGrice IJ, Smaill BH. High-resolution 3-dimensional reconstruction of the infarct border zone: impact of structural remodeling on electrical activation. Circ Res. 2012;111:301–11.

    Article  CAS  Google Scholar 

  19. Cheng DK, Tung L, Sobie EA. Nonuniform responses of transmembrane potential during electric field stimulation of single cardiac cells. Am J Phys. 1999;277:H351–62.

    Article  CAS  Google Scholar 

  20. Knisley SB, Blitchington TF, Hill BC, Grant AO, Smith WM, Pilkington TC, Ideker RE. Optical measurements of transmembrane potential changes during electric field stimulation of ventricular cells. Circ Res. 1993;72:255–70.

    Article  CAS  Google Scholar 

  21. Windisch H, Ahammer H, Schaffer P, Muller W, Platzer D. Optical multisite monitoring of cell excitation phenomena in isolated cardiomyocytes. Pflugers Arch. 1995;430:508–18.

    Article  CAS  Google Scholar 

  22. Sharma V, Tung L. Theoretical and experimental study of sawtooth effect in isolated cardiac cell-pairs. J Cardiovasc Electrophysiol. 2001;12:1164–73.

    Article  CAS  Google Scholar 

  23. Spach MS, Heidlage JF. The stochastic nature of cardiac propagation at a microscopic level. Electrical description of myocardial architecture and its application to conduction. Circ Res. 1995;76:366–80.

    Article  CAS  Google Scholar 

  24. Fast VG, Kleber AG. Microscopic conduction in cultured strands of neonatal rat heart cells measured with voltage-sensitive dyes. Circ Res. 1993;73:914–25.

    Article  CAS  Google Scholar 

  25. Krinsky V, Pumir A. Models of defibrillation of cardiac tissue. Chaos. 1998;8:188–203.

    Article  Google Scholar 

  26. Gillis AM, Fast VG, Rohr S, Kleber AG. Spatial changes in transmembrane potential during extracellular electrical shocks in cultured monolayers of neonatal rat ventricular myocytes. Circ Res. 1996;79:676–90.

    Article  CAS  Google Scholar 

  27. Zhou X, Ideker RE, Blitchington TF, Smith WM, Knisley SB. Optical transmembrane potential measurements during defibrillation-strength shocks in perfused rabbit hearts. Circ Res. 1995;77:593–602.

    Article  CAS  Google Scholar 

  28. Hooks DA, Tomlinson KA, Marsden SG, LeGrice IJ, Smaill BH, Pullan AJ, Hunter PJ. Cardiac microstructure: implications for electrical propagation and defibrillation in the heart. Circ Res. 2002;91:331–8.

    Article  CAS  Google Scholar 

  29. Gillis AM, Fast VG, Rohr S, Kleber AG. Mechanism of ventricular defibrillation. The role of tissue geometry in the changes in transmembrane potential in patterned myocyte cultures. Circulation. 2000;101:2438–45.

    Article  CAS  Google Scholar 

  30. Tung L, Kleber AG. Virtual sources associated with linear and curved strands of cardiac cells. Am J Phys. 2000;279:H1579–90.

    CAS  Google Scholar 

  31. Luther S, Fenton FH, Kornreich BG, Squires A, Bittihn P, Hornung D, Zabel M, Flanders J, Gladuli A, Campoy L, Cherry EM, Luther G, Hasenfuss G, Krinsky VI, Pumir A, Gilmour RF Jr, Bodenschatz E. Low-energy control of electrical turbulence in the heart. Nature. 2011;475:235–9.

    Article  CAS  Google Scholar 

  32. Fast VG, Rohr S, Gillis AM, Kleber AG. Activation of cardiac tissue by extracellular electrical shocks: formation of ‘secondary sources’ at intercellular clefts in monolayers of cultured myocytes. Circ Res. 1998;82:375–85.

    Article  CAS  Google Scholar 

  33. Fozzard HA. Membrane capacity of the cardiac Purkinje fibre. J Physiol. 1966;182:255–67.

    Article  CAS  Google Scholar 

  34. Luo CH, Rudy Y. A dynamic model of the cardiac ventricular action potential. II. Afterdepolarizations, triggered activity, and potentiation. Circ Res. 1994;74:1097–113.

    Article  CAS  Google Scholar 

  35. Amoros-Figueras G, Jorge E, Alonso-Martin C, Traver D, Ballesta M, Bragos R, Rosell-Ferrer J, Cinca J. Endocardial infarct scar recognition by myocardial electrical impedance is not influenced by changes in cardiac activation sequence. Heart Rhythm. 2018;15:589–96.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andre G. Kleber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kleber, A.G., Gillis, A.M. (2021). The Role of Microscopic Tissue Structure in Defibrillation. In: Efimov, I.R., Ng, F.S., Laughner, J.I. (eds) Cardiac Bioelectric Therapy. Springer, Cham. https://doi.org/10.1007/978-3-030-63355-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63355-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63354-7

  • Online ISBN: 978-3-030-63355-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics