Skip to main content

His-Purkinje Involvement in Arrhythmias and Defibrillation

  • Chapter
  • First Online:
Cardiac Bioelectric Therapy

Abstract

The His–Purkinje system provides rapid and coordinated activation of the heart. In recent years, its role in the initiation and maintenance of ventricular arrhythmia has started to be explored. Experimentally, the Purkinje system (PS) has been shown to be an essential component to maintain long-duration ventricular fibrillation (more than 2 min) in humans and dogs, where computer models are able to show reentry mechanisms between the myocardium and the PS. Experiments and computer simulations have also shown that the PS may initiate ventricular fibrillation or ventricular tachycardia through early and delayed afterdepolarizations. In sum, arrhythmogenesis in the PS has been demonstrated and its implication is a current focus in research for rhythm control and prevention of cardiac sudden death.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Robinson RB, Boyden PA, Hoffman BF, Hewett KW. Electrical restitution process in dispersed canine cardiac Purkinje and ventricular cells. Am J Phys. 1987;253(5 Pt 2):H1018–25. https://doi.org/10.1152/ajpheart.1987.253.5.H1018.

    Article  CAS  Google Scholar 

  2. Huang S, Wu L, Huang J, Panitchob N, Hu N, Ranjan R, et al. Restitution characteristics of His bundle and working myocardium in isolated rabbit hearts. Tolkacheva E, editor PLoS One. 2017;12(10):e0186880. https://doi.org/10.1371/journal.pone.0186880.

    Article  CAS  Google Scholar 

  3. Myerburg RJ, Nilsson K, Gelband H. Physiology of canine intraventricular conduction and endocardial excitation. Circ Res. 1972;30(2):217–43. https://doi.org/10.1161/01.RES.30.2.217.

    Article  CAS  PubMed  Google Scholar 

  4. Livia C, Sugrue A, Witt T, Polkinghorne MD, Maor E, Kapa S, et al. Elimination of Purkinje fibers by electroporation reduces ventricular fibrillation vulnerability. J Am Heart Assoc. 2018;7(15):e009070. https://doi.org/10.1161/JAHA.118.009070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Koizumi A, Sasano T, Kimura W, Miyamoto Y, Aiba T, Ishikawa T, et al. Genetic defects in a His-Purkinje system transcription factor, IRX3, cause lethal cardiac arrhythmias. Eur Heart J. 2016;37(18):1469–75. https://doi.org/10.1093/eurheartj/ehv449.

    Article  CAS  PubMed  Google Scholar 

  6. Zhao Z, Xie Y, Wen H, Xiao D, Allen C, Fefelova N, et al. Role of the transient outward potassium current in the genesis of early afterdepolarizations in cardiac cells. Cardiovasc Res. 2012;95(3):308–16. https://doi.org/10.1093/cvr/cvs183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Herron TJ, Milstein ML, Anumonwo J, Priori SG, Jalife J. Purkinje cell calcium dysregulation is the cellular mechanism that underlies catecholaminergic polymorphic ventricular tachycardia. Heart Rhythm. 2010;7(8):1122–8. https://doi.org/10.1016/j.hrthm.2010.06.010.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Cerrone M, Noujaim SF, Tolkacheva EG, Talkachou A, Connell O, Berenfeld O, et al. Arrhythmogenic mechanisms in a Mouse model of. 2007; https://doi.org/10.1161/CIRCRESAHA.107.148064.

  9. Vaidyanathan R, Van Ert H, Haq KT, Morotti S, Esch S, McCune EC, et al. Inward rectifier potassium channels (Kir2.x) and Caveolin-3 domain-specific interaction: implications for Purkinje cell-dependent ventricular arrhythmias. Circ Arrhythm Electrophysiol. 2018;11(1):e005800. https://doi.org/10.1161/CIRCEP.117.005800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Spear JF, Michelson EL, Spielman SR, Moore EN. The origin of ventricular arrhythmias 24 hours following experimental anterior septal coronary artery occlusion. Circulation. 1977;55(6):844–52. https://doi.org/10.1161/01.CIR.55.6.844.

    Article  CAS  PubMed  Google Scholar 

  11. Xing D, Martins JB. Triggered activity due to delayed afterdepolarizations in sites of focal origin of ischemic ventricular tachycardia. Am J Physiol Heart Circ Physiol. 2004;287(5 56–5):2078–84. https://doi.org/10.1152/ajpheart.00027.2004.

    Article  CAS  Google Scholar 

  12. Arnar DO, Bullinga JR, Martins JB. Role of the Purkinje system in spontaneous ventricular tachycardia during acute ischemia in a canine model. Circulation. 1997;96(7):2421–9. https://doi.org/10.1161/01.cir.96.7.2421.

    Article  CAS  PubMed  Google Scholar 

  13. Sakata T, Tanner H, Stuber T, Delacrétaz E. His-Purkinje system re-entry in patients with clustering ventricular tachycardia episodes. Europace. 2008;10(3):289–93. https://doi.org/10.1093/europace/eun004.

    Article  PubMed  Google Scholar 

  14. Nogami A, Naito S, Tada H, Taniguchi K, Okamoto Y, Nishimura S, et al. Demonstration of diastolic and presystolic Purkinje potentials as critical potentials in a macroreentry circuit of verapamil-sensitive idiopathic left ventricular tachycardia. J Am Coll Cardiol. 2000;36(3):811–23. https://doi.org/10.1016/S0735-1097(00)00780-4.

    Article  CAS  PubMed  Google Scholar 

  15. Schmidt B, Tang M, Chun KRJ, Antz M, Tilz RR, Metzner A, et al. Left bundle branch–Purkinje system in patients with bundle branch reentrant tachycardia: lessons from catheter ablation and electroanatomic mapping. Heart Rhythm. 2009;6(1):51–8. https://doi.org/10.1016/j.hrthm.2008.09.028.

    Article  PubMed  Google Scholar 

  16. Eckart RE, Hruczkowski TW, Tedrow UB, Koplan BA, Epstein LM, Stevenson WG. Sustained ventricular tachycardia associated with corrective valve surgery. Circulation. 2007;116(18):2005–11. https://doi.org/10.1161/CIRCULATIONAHA.107.703157.

    Article  PubMed  Google Scholar 

  17. Chen H, Shi L, Yang B, Ju W, Zhang F, Yang G, et al. Electrophysiological characteristics of bundle branch reentry ventricular tachycardia in patients without structural heart disease. Circ Arrhythm Electrophysiol. 2018;11(7):e006049. https://doi.org/10.1161/CIRCEP.117.006049.

    Article  PubMed  Google Scholar 

  18. Panitchob N, Li L, Huang J, Ranjan R, Ideker RE, Dosdall DJ. Endocardial activation drives activation patterns during long-duration ventricular fibrillation and defibrillation. Circ Arrhythm Electrophysiol. 2017;10(12):1435–41. https://doi.org/10.1161/CIRCEP.117.005562.

    Article  Google Scholar 

  19. Huang J, Dosdall DJ, Cheng K, Li L, Rogers JM, Ideker RE. The importance of Purkinje activation in long duration ventricular fibrillation. J Am Heart Assoc. 2014;3(1):e000495. https://doi.org/10.1161/JAHA.113.000495.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Tabereaux PB, Walcott GP, Rogers JM, Kim J, Dosdall DJ, Robertson PG, et al. Activation patterns of Purkinje fibers during long-duration ventricular fibrillation in an isolated canine heart model. Circulation. 2007;116(10):1113–9. https://doi.org/10.1161/CIRCULATIONAHA.107.699264.

    Article  PubMed  Google Scholar 

  21. Li L, Zheng X, Dosdall DJ, Huang J, Pogwizd SM, Ideker RE. Long-duration ventricular fibrillation exhibits 2 distinct organized states. Circ Arrhythmia Electrophysiol. 2013;6(6):1192–9. https://doi.org/10.1161/CIRCEP.113.000459.

    Article  CAS  Google Scholar 

  22. Allison JS, Qin H, Dosdall DJ, Huang J, Newton JC, Allred JD, et al. The transmural activation sequence in porcine and canine left ventricle is markedly different during long-duration ventricular fibrillation. J Cardiovasc Electrophysiol. 2007;18(12):1306–12. https://doi.org/10.1111/j.1540-8167.2007.00963.x.

    Article  PubMed  Google Scholar 

  23. Jackson N, Massé S, Zamiri N, Azam MA, Lai PFH, Kusha M, et al. Mechanisms of long-duration ventricular fibrillation in human hearts and experimental validation in canine Purkinje fibers. JACC Clin Electrophysiol. 2015;1(3):187–97. https://doi.org/10.1016/j.jacep.2015.04.003.

    Article  PubMed  Google Scholar 

  24. Worley SJ, Swain JL, Colavita PG, Smith WM, Ideker RE. Development of an endocardial-epicardial gradient of activation rate during electrically induced, sustained ventricular fibrillation in dogs. Am J Cardiol. 1985; https://doi.org/10.1016/0002-9149(85)90162-6.

  25. Dosdall DJ, Tabereaux PB, Kim JJ, Walcott GP, Rogers JM, Killingsworth CR, et al. Chemical ablation of the Purkinje system causes early termination and activation rate slowing of long-duration ventricular fibrillation in dogs. Am J Physiol Heart Circ Physiol. 2008;295(2):883–9. https://doi.org/10.1152/ajpheart.00466.2008.

    Article  CAS  Google Scholar 

  26. Bagdonas AA, Stuckey JH, Piera J, Amer NS, Hoffman BF. Effects of ischemia and hypoxia on the specialized conducting system of the canine heart. Am Heart J. 1961;61(2):206–18. https://doi.org/10.1016/0002-8703(61)90577-4.

    Article  CAS  PubMed  Google Scholar 

  27. Angel N, Li L, Dosdall DJ. His bundle activates faster than ventricular myocardium during prolonged ventricular fibrillation. PLoS One. 2014;9(7):e101666. https://doi.org/10.1371/journal.pone.0101666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cha YM, Uchida T, Wolf PL, Peters BB, Fishbein MC, Karagueuzian HS, et al. Effects of chemical subendocardial ablation on activation rate gradient during ventricular fibrillation. Am J Phys. 1995;269(6 Pt 2):H1998–2009. https://doi.org/10.1152/ajpheart.1995.269.6.H1998.

    Article  CAS  Google Scholar 

  29. Newton JC, Smith WM, Ideker RE. Estimated global transmural distribution of activation rate and conduction block during porcine and canine ventricular fibrillation. Circ Res. 2004;94(6):836–42. https://doi.org/10.1161/01.RES.0000120860.01645.17.

    Article  CAS  PubMed  Google Scholar 

  30. Lin C, Jin Q, Zhang N, Zhou J, Pang Y, Xin Y, et al. Endocardial focal activation originating from Purkinje fibers plays a role in the maintenance of long duration ventricular fibrillation. Croat Med J. 2014;55(2):121–7. https://doi.org/10.3325/CMJ.2014.55.121.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Maruyama M, Joung B, Tang L, Shinohara T, On Y-K, Han S, et al. Diastolic intracellular calcium-membrane voltage coupling gain and postshock arrhythmias. Circ Res. 2009;106(2):399–408. https://doi.org/10.1161/circresaha.109.211292.

    Article  PubMed  Google Scholar 

  32. Dosdall DJ, Osorio J, Robichaux RP, Huang J, Li L, Ideker RE. Purkinje activation precedes myocardial activation following defibrillation after long-duration ventricular fibrillation. Hear Rhythm. 2010;7(3):405–12. https://doi.org/10.1016/j.hrthm.2009.11.025.

    Article  Google Scholar 

  33. Abboud S, Berenfeld O, Sadeh D. Simulation of high-resolution QRS complex using a ventricular model with a fractal conduction system. Effects of ischemia on high-frequency QRS potentials. Circ Res. 1991;68(6):1751–60. https://doi.org/10.1161/01.res.68.6.1751.

    Article  CAS  PubMed  Google Scholar 

  34. Ijiri T, Ashihara T, Yamaguchi T, Takayama K, Igarashi T, Shimada T, et al. A procedural method for modeling the purkinje fibers of the heart. J Physiol Sci. 2008;58(7):481–6. https://doi.org/10.2170/physiolsci.RP003208.

    Article  PubMed  Google Scholar 

  35. Sebastian R, Zimmerman V, Romero D, Sanchez-Quintana D, Frangi AF. Characterization and modeling of the peripheral cardiac conduction system. IEEE Trans Med Imaging. 2013;32(1):45–55. https://doi.org/10.1109/TMI.2012.2221474.

    Article  PubMed  Google Scholar 

  36. Palamara S, Vergara C, Faggiano E, Nobile F. An effective algorithm for the generation of patient-specific Purkinje networks in computational electrocardiology. J Comput Phys. 2015;283:495–517. https://doi.org/10.1016/j.jcp.2014.11.043.

    Article  Google Scholar 

  37. Sahli Costabal F, Hurtado DE, Kuhl E. Generating Purkinje networks in the human heart. J Biomech. 2016;49(12):2455–65. https://doi.org/10.1016/j.jbiomech.2015.12.025.

    Article  PubMed  Google Scholar 

  38. Vigmond EJ, Clements C. Construction of a computer model to investigate sawtooth effects in the Purkinje system. IEEE Trans Biomed Eng. 2007;54(3):389–99. https://doi.org/10.1109/TBME.2006.888817.

    Article  PubMed  Google Scholar 

  39. Romero D, Sebastian R, Bijnens BH, Zimmerman V, Boyle PM, Vigmond EJ, et al. Effects of the Purkinje system and cardiac geometry on biventricular pacing: a model study. Ann Biomed Eng. 2010;38(4):1388–98. https://doi.org/10.1007/s10439-010-9926-4.

    Article  PubMed  Google Scholar 

  40. Tusscher KHWJT, Panfilov AV. Modelling of the ventricular conduction system. Prog Biophys Mol Biol. 2008;96(1–3):152–70. https://doi.org/10.1016/j.pbiomolbio.2007.07.026.

    Article  PubMed  Google Scholar 

  41. Krishnamoorthi S, Perotti LE, Borgstrom NP, Ajijola OA, Frid A, Ponnaluri AV, et al. Simulation methods and validation criteria for modeling cardiac ventricular electrophysiology. PLoS One. 2014;9(12):e114494. https://doi.org/10.1371/journal.pone.0114494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Durrer D, van Dam RT, Freud GE, Janse MJ, Meijler FL, Arzbaecher RC. Total excitation of the isolated human heart. Circulation. 1970;41(6):899–912. https://doi.org/10.1161/01.CIR.41.6.899.

    Article  CAS  PubMed  Google Scholar 

  43. Atkinson A, Inada S, Li J, Tellez JO, Yanni J, Sleiman R, et al. Anatomical and molecular mapping of the left and right ventricular His-Purkinje conduction networks. J Mol Cell Cardiol. 2011;51(5):689–701. https://doi.org/10.1016/j.yjmcc.2011.05.020.

    Article  CAS  PubMed  Google Scholar 

  44. Berenfeld O, Jalife J. Purkinje-muscle reentry as a mechanism of polymorphic ventricular arrhythmias in a 3-dimensional model of the ventricles. Circ Res. 1998;82(10):1063–77. https://doi.org/10.1161/01.RES.82.10.1063.

    Article  CAS  PubMed  Google Scholar 

  45. Pashaei A, Romero D, Sebastian R, Camara O, Frangi AF. Fast multiscale modeling of cardiac electrophysiology including Purkinje system. IEEE Trans Biomed Eng. 2011;58(10 PART 2):2956–60. https://doi.org/10.1109/TBME.2011.2162841.

    Article  PubMed  Google Scholar 

  46. Lange M, Palamara S, Lassila T, Vergara C, Quarteroni A, Frangi AF. Improved hybrid/GPU algorithm for solving cardiac electrophysiology problems on Purkinje networks. Int J Numer Method Biomed Eng. 2017;33(6):e2835. https://doi.org/10.1002/cnm.2835.

    Article  Google Scholar 

  47. Bordas R, Gillow K, Lou Q, Efimov IR, Gavaghan D, Kohl P, et al. Rabbit-specific ventricular model of cardiac electrophysiological function including specialized conduction system. Prog Biophys Mol Biol. 2011;107(1):90–100. https://doi.org/10.1016/j.pbiomolbio.2011.05.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bordas RM, Gillow K, Gavaghan D, Rodriguez B, Kay D. A Bidomain model of the ventricular specialized conduction system of the heart. SIAM J Appl Math. 2012;72(5):1618–43. https://doi.org/10.1137/11082796X.

    Article  Google Scholar 

  49. DiFrancesco D, Noble D. A model of cardiac electrical activity incorporating ionic pumps and concentration changes. Philos Trans R Soc Lond Ser B Biol Sci. 1985;307(1133):353–98. https://doi.org/10.1098/rstb.1985.0001.

    Article  CAS  Google Scholar 

  50. Stewart P, Aslanidi OV, Noble D, Noble PJ, Boyett MR, Zhang H. Mathematical models of the electrical action potential of Purkinje fibre cells. Philos Trans R Soc A Math Phys Eng Sci. 2009;367(1896):2225–55. https://doi.org/10.1098/rsta.2008.0283.

    Article  CAS  Google Scholar 

  51. ten Tusscher KHWJ, Panfilov AV. Alternans and spiral breakup in a human ventricular tissue model. Am J Physiol Heart Circ Physiol. 2006;291(3):H1088–100. https://doi.org/10.1152/ajpheart.00109.2006.

    Article  CAS  PubMed  Google Scholar 

  52. Lee FY, Wei J, Wang JJ, Liu HW, Shih TC, Lin CI. Electromechanical properties of Purkinje fiber strands isolated from human ventricular endocardium. J Hear Lung Transplant. 2004;23(6):737–44. https://doi.org/10.1016/S1053-2498(03)00230-4.

    Article  Google Scholar 

  53. Boyle PM, Deo M, Plank G, Vigmond EJ. Purkinje-mediated effects in the response of quiescent ventricles to defibrillation shocks. Ann Biomed Eng. 2010;38(2):456–68. https://doi.org/10.1007/s10439-009-9829-4.

    Article  PubMed  Google Scholar 

  54. Deo M, Boyle P, Plank G, Vigmond E. Arrhythmogenic mechanisms of the Purkinje system during electric shocks: a modeling study. Hear Rhythm. 2009;6(12):1782–9. https://doi.org/10.1016/j.hrthm.2009.08.023.

    Article  Google Scholar 

  55. Deo M, Boyle PM, Kim AM, Vigmond EJ. Arrhythmogenesis by single ectopic beats originating in the Purkinje system. Am J Physiol Circ Physiol. 2010;299(4):H1002–11. https://doi.org/10.1152/ajpheart.01237.2009.

    Article  CAS  Google Scholar 

  56. Mahajan A, Shiferaw Y, Sato D, Baher A, Olcese R, Xie L, et al. A rabbit ventricular action potential model replicating cardiac dynamics at rapid heart rates. Biophys J. 2008;94(2):392–410. https://doi.org/10.1529/biophysj.106.98160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Baher AA, Uy M, Xie F, Garfinkel A, Qu Z, Weiss JN. Bidirectional ventricular tachycardia: ping pong in the HisPurkinje system. Hear Rhythm. 2011;8(4):599–605. https://doi.org/10.1016/j.hrthm.2010.11.038.

    Article  Google Scholar 

  58. Campos FO, Shiferaw Y, Prassl AJ, Boyle PM, Vigmond EJ, Plank G. Stochastic spontaneous calcium release events trigger premature ventricular complexes by overcoming electrotonic load. Cardiovasc Res. 2015;107(1):175–83. https://doi.org/10.1093/cvr/cvv149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported in part by National Health Institutes, Heart, Lung, and Blood Institute Research Grants HL 128752 and grant support from the Treadwell Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derek J. Dosdall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lange, M., Dosdall, D.J. (2021). His-Purkinje Involvement in Arrhythmias and Defibrillation. In: Efimov, I.R., Ng, F.S., Laughner, J.I. (eds) Cardiac Bioelectric Therapy. Springer, Cham. https://doi.org/10.1007/978-3-030-63355-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63355-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63354-7

  • Online ISBN: 978-3-030-63355-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics