Skip to main content

Microwave-Driven Dynamics of Magnetic Skyrmions Under a Tilted Magnetic Field: Magnetic Resonances, Translational Motions, and Spin-Motive Forces

  • Chapter
  • First Online:
Chirality, Magnetism and Magnetoelectricity

Part of the book series: Topics in Applied Physics ((TAP,volume 138))

  • 2281 Accesses

Abstract

Magnetic skyrmions, particle-like magnetic textures characterized by a quantized topological invariant in magnets with broken spatial inversion symmetry, are currently attracting enormous research interest in the field of spintronics. Recent intensive studies have uncovered that magnetic skyrmions exhibit rich physical phenomena and device functions originating from their topological nature. In this chapter, we discuss microwave-induced dynamical phenomena of magnetic skyrmions associated with their peculiar spin-wave modes. In particular, we focus on a situation that the magnetic skyrmions are confined in a quasi-two-dimensional thin-plate magnet under application of a static magnetic field tilted from the perpendicular direction. It is theoretically demonstrated that the spin-wave excitations of these magnetic skyrmions by microwave irradiation give rise to translational motion of the skyrmions and generation of the DC electric voltages. These phenomena indicate that rich physics and functionalities are hidden in the microwave-driven skyrmion dynamics under a tilted magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Seki, M. Mochizuki, Skyrmions in Magnetic Materials (Springer, Berlin, 2015)

    Google Scholar 

  2. N. Nagaosa, Y. Tokura, Nat. Nanotechnol. 8, 899 (2013)

    Article  ADS  Google Scholar 

  3. A. Fert et al., Nat. Nanotechnol. 8, 152 (2013)

    Article  ADS  Google Scholar 

  4. G. Finocchio et al., J. Phys. D: Appl. Phys. 49, 423001 (2016)

    Article  Google Scholar 

  5. K. Everschor-Sitte et al., J. Appl. Phys. 124, 240901 (2018)

    Article  ADS  Google Scholar 

  6. M. Garst et al., J. Phys. D: Appl. Phys. 50, 293002 (2017)

    Article  Google Scholar 

  7. M. Mochizuki, S. Seki, J. Phys.: Condens. Matter 27, 503001 (2015)

    Google Scholar 

  8. T.H.R. Skyrme, Proc. R. Soc. A 260, 127 (1961)

    MathSciNet  ADS  Google Scholar 

  9. T.H.R. Skyrme, Nucl. Phys. 31, 556 (1962)

    Article  MathSciNet  Google Scholar 

  10. A.N. Bogdanov, D.A. Yablonskii, Sov. Phys. JETP 68, 101 (1989)

    Google Scholar 

  11. A. Bogdanov, A. Hubert, J. Magn. Magn. Mat. 138, 255 (1994)

    Article  ADS  Google Scholar 

  12. S. Mühlbauer et al., Science 323, 915 (2009)

    Article  ADS  Google Scholar 

  13. X.Z. Yu et al., Nature 465, 901 (2010)

    Article  ADS  Google Scholar 

  14. X.Z. Yu et al., Nat. Mater. 10, 106 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  15. S. Seki et al., Science 336, 198 (2012)

    Article  ADS  Google Scholar 

  16. Y. Tokunaga et al., Nat. Commun. 6, 7638 (2015)

    Article  ADS  Google Scholar 

  17. I. Kezsmarki et al., Nat. Mater. 14, 1116 (2012)

    Article  ADS  Google Scholar 

  18. S. Bordács et al., Sci. Rep. 7, 7584 (2017)

    Article  ADS  Google Scholar 

  19. Y. Fujima et al., Phys. Rev. B 95, 180410(R) (2017)

    Article  ADS  Google Scholar 

  20. A. Nayak et al., Nature 548, 561 (2017)

    Article  ADS  Google Scholar 

  21. T. Kurumaji et al., Phys. Rev. Lett. 119, 237201 (2017)

    Article  ADS  Google Scholar 

  22. C. Moreau-Luchaire et al., Nat. Nanotechnol. 11, 444 (2016)

    Article  ADS  Google Scholar 

  23. G. Chen et al., Appl. Phys. Lett. 106, 242404 (2015)

    Article  ADS  Google Scholar 

  24. O. Boulle et al., Nat. Nanotechnol. 11, 449 (2016)

    Article  ADS  Google Scholar 

  25. I.E. Dzyaloshinskii, Sov. Phys. JETP 5, 1259 (1957)

    Google Scholar 

  26. T. Moriya, Phys. Rev. 120, 91 (1960)

    Article  ADS  Google Scholar 

  27. M. Mochizuki, Phys. Rev. Lett. 108, 017601 (2012)

    Article  ADS  Google Scholar 

  28. W. Wang et al., Phys. Rev. B 92, 020403(R) (2015)

    Article  ADS  Google Scholar 

  29. M. Ikka et al., Phys. Rev. B 98, 184428 (2018)

    Article  ADS  Google Scholar 

  30. A. Takeuchi, M. Mochizuki, Appl. Phys. Lett. 113, 072404 (2018)

    Article  ADS  Google Scholar 

  31. T. Koide et al., Phys. Rev. B 100, 014408 (2019)

    Article  ADS  Google Scholar 

  32. P. Bak, M.H. Jensen, J. Phys. C 13, L881 (1980)

    Article  ADS  Google Scholar 

  33. S.D. Yi et al., Phys. Rev. B 80, 054416 (2009)

    Article  ADS  Google Scholar 

  34. A. Tonomura et al., Nano Lett. 12, 1673 (2012)

    Article  ADS  Google Scholar 

  35. A. Takeuchi et al., Sci. Rep. 9, 9528 (2019)

    Article  ADS  Google Scholar 

  36. K. Nawaoka et al., Appl. Phys. Exp. 8, 063004 (2015)

    Article  ADS  Google Scholar 

  37. T. Srivastava et al., Nano Lett. 18, 4871 (2018)

    Article  ADS  Google Scholar 

  38. I.E. Rashba, Sov. Phys. Solid State 2, 1109 (1960)

    Google Scholar 

  39. A. Manchon et al., Nat. Mater. 14, 871 (2015)

    Article  ADS  Google Scholar 

  40. J. Nitta et al., Phys. Rev. Lett. 78, 1335 (1997)

    Article  ADS  Google Scholar 

  41. C.R. Ast et al., Phys. Rev. Lett. 98, 186807 (2007)

    Article  ADS  Google Scholar 

  42. T. Nakagawa et al., Phys. Rev. B 75, 155409 (2007)

    Article  ADS  Google Scholar 

  43. G.E. Volovik, J. Phys. C 20, L83 (1987)

    Article  ADS  Google Scholar 

  44. S.E. Barnes, S. Maekawa, Phys. Rev. Lett. 98, 246601 (2007)

    Article  ADS  Google Scholar 

  45. S.A. Yang et al., Phys. Rev. Lett. 102, 067201 (2009)

    Article  ADS  Google Scholar 

  46. K. Tanabe et al., Nat. Commun. 3, 845 (2012)

    Article  ADS  Google Scholar 

  47. J. Ohe, Y. Shimada, Appl. Phys. Lett. 103, 242403 (2013)

    Article  ADS  Google Scholar 

  48. Y. Shimada, J.I. Ohe, Phys. Rev. B 91, 174437 (2015)

    Article  ADS  Google Scholar 

  49. W. Koshibae et al., Jpn. J. Appl. Phys. 54, 053001 (2015)

    Article  ADS  Google Scholar 

  50. X. Zhang et al., Sci. Rep. 5, 9400 (2015)

    Article  Google Scholar 

  51. D. Pinna et al., Phys. Rev. Appl. 9, 064018 (2018)

    Article  ADS  Google Scholar 

  52. D. Prychynenko et al., Phys. Rev. Appl. 9, 014034 (2018)

    Article  ADS  Google Scholar 

  53. G. Bourianoff et al., AIP Adv. 8, 055602 (2018)

    Article  ADS  Google Scholar 

  54. Z. He, D. Fan, arXiv:1705.02995

  55. X. Chen et al., Nanoscale 10, 6139 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahito Mochizuki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mochizuki, M. (2021). Microwave-Driven Dynamics of Magnetic Skyrmions Under a Tilted Magnetic Field: Magnetic Resonances, Translational Motions, and Spin-Motive Forces. In: Kamenetskii, E. (eds) Chirality, Magnetism and Magnetoelectricity. Topics in Applied Physics, vol 138. Springer, Cham. https://doi.org/10.1007/978-3-030-62844-4_8

Download citation

Publish with us

Policies and ethics