Skip to main content

Floquet Theory and Ultrafast Control of Magnetism

  • Chapter
  • First Online:
Chirality, Magnetism and Magnetoelectricity

Part of the book series: Topics in Applied Physics ((TAP,volume 138))

Abstract

The development of laser science and technology has stimulated the study of condensed matter physics, especially, dynamical or non-equilibrium nature in solids. The laser technique in terahertz (THz) regime, whose photon energy is comparable to those of typical collective modes in solids such as magnetic excitations, phonons, etc., has remarkably proceeded in the last decade. Theoretical tools for non-equilibrium states have also progressed. Thanks to these backgrounds, magneto-optics, especially, the study of controlling magnetism with laser, now enters a new stage. For such controls, Floquet engineering is a key concept, which means the method of controlling static properties of targets with high-frequency external fields like laser. I review the theoretical foundation of Floquet engineering and its application to magnetic insulators. Basic magnetic quantities such as magnetization, spin chirality, and spin current are shown to be controlled with intense THz laser or wave.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. H. Hirori, A. Doi, F. Blanchard, K. Tanaka, Appl. Phys. Lett. 98, 91106 (2011)

    Article  Google Scholar 

  2. Y. Mukai, H. Hirori, T. Yamamoto, H. Kageyama, K. Tanaka, New J. Phys. 18, 013045 (2016)

    Article  ADS  Google Scholar 

  3. B. Liu, H. Bromberger, A. Cartella, T. Gebert, M. Forst, A. Cavalleri, Opt. Lett. 42, 129 (2017)

    Article  ADS  Google Scholar 

  4. M. Sato, T. Higuchi, N. Kanda, K. Konishi, K. Yoshioka, T. Suzuki, K. Misawa, M. Kuwato-Gonokami, Nature Photo. 7, 724 (2013)

    Article  ADS  Google Scholar 

  5. P. Nemec, M. Fiebig, T. Kampfrath, A.V. Kimel, Nature Phys. 14, 229 (2018)

    Article  ADS  Google Scholar 

  6. C.P. Slichter, Principles of Magnetic Resonance (Springer, 1989)

    Google Scholar 

  7. H. Nojiri, Z.W. Ouyang, Terahertz Sci. Tech. 5, 1 (2012)

    Google Scholar 

  8. A. Kirilyuk, A.V. Kimel, T. Rasing, Rev. Mod. Phys. 82, 2731 (2010)

    Article  ADS  Google Scholar 

  9. Spin Current, edited by S. Maekawa, S. O. Valenzuela, E. Saitoh, and T. Kimura (Oxford Univ. Press, 2012)

    Google Scholar 

  10. A.M. Zagoskin, Quantum Theory of Many-Body Systems: Techniques and Applications, 2nd edn. (Springer, New York, 2014)

    MATH  Google Scholar 

  11. G. Stefanucci and R. v. Leeuwen, Nonequilibrium Many-Body Theory of Quantum Systems: A Modern Introduction (Cambridge University Press, Cambridge, England, 2013)

    Google Scholar 

  12. H.J.W. Haug, A.-P. Jauho, Quantum Kinetics in Transport and Optics of Semiconductors (Springer, 2007)

    Google Scholar 

  13. A. Kamenev, Field Theory of Non-Equilibrium Systems, (Cambridge Univ. 2011)

    Google Scholar 

  14. H. Aoki, N. Tsuji, M. Eckstein, M. Kollar, T. Oka, P. Werner, Rev. Mod. Phys. 86, 779 (2014)

    Article  ADS  Google Scholar 

  15. H.-P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2007)

    Book  MATH  Google Scholar 

  16. R. Alicki, K. Lendi, Quantum Dynamical Semigroups and Applications (Springer, 2007)

    Google Scholar 

  17. U. Weiss, Quantum Dissipative Systems (World Scientific, 1999)

    Google Scholar 

  18. H.-P. Breuer, W. Huber, F. Petruccione, Phys. Rev. E 61, 4883 (2000)

    Article  ADS  Google Scholar 

  19. T. N. Ikeda and M. Sato, Sci. Adv. 6, eabb4019 (2020)

    Google Scholar 

  20. M. Bukov, L. D’Alessio, A. Polkovnikov, Adv. in Phys. 64, 139 (2015)

    Article  ADS  Google Scholar 

  21. A. Eckardt, E. Anisimovas, New J. Phys. 17, 93039 (2015)

    Article  Google Scholar 

  22. A. Eckardt, Rev. Mod. Phys. 89, 011004 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  23. T. Oka, S. Kitamura, Ann. Rev. Cond. Mat. Phys. 10, 387 (2019)

    Article  ADS  Google Scholar 

  24. S. Takayoshi, M. Sato, T. Oka, Phys. Rev. B 90, 214413 (2014)

    Article  ADS  Google Scholar 

  25. M. Sato, S. Takayoshi, T. Oka, Phys. Rev. Lett. 117, 147202 (2016)

    Article  ADS  Google Scholar 

  26. M. Sato, Y. Sasaki, T. Oka,. arXiv:1404.2010

  27. H. Fujita, M. Sato, Phys. Rev. B 95, 054421 (2017); Phys. Rev. B 96, 060407(R) (2017)

    Google Scholar 

  28. H. Fujita, M. Sato, Sci. Rep. 8, 15738 (2018)

    Article  ADS  Google Scholar 

  29. H. Fujita, Y. Tada, M. Sato, New. J. Phys. 21, 073010 (2019)

    Article  ADS  Google Scholar 

  30. S. Higashikawa, H. Fujita, M. Sato,. arXiv:1810.01103

  31. H. Ishizuka, M. Sato, Phys. Rev. Lett. 122, 197702 (2019); Phys. Rev. B 100, 224411 (2019)

    Google Scholar 

  32. T.N. Ikeda, M. Sato, Phys. Rev. B 100, 214424 (2019)

    Article  ADS  Google Scholar 

  33. N. W. Ashcroft and N. D. Mermin, Solid State Physics, (Thomson Learning, 1976)

    Google Scholar 

  34. G. Grosso, G.P. Parravicini, Solid State Physics, 2nd edn. (Academic Press, 2013)

    Google Scholar 

  35. A.A. Abrikosov, L.P. Gorkov, I.E. Dzyaloshinski, Methods of Quantum Field Theory in Statistical Physics (Dover Publications, 1975)

    Google Scholar 

  36. G.D. Mahan, Many-Particle Physics, 3rd edn. (Springer, 2000)

    Google Scholar 

  37. J.H. Shirley, Phys. Rev. 138, B979 (1965)

    Article  ADS  Google Scholar 

  38. H. Sambe, Phys. Rev. A 7, 2203 (1973)

    Article  ADS  Google Scholar 

  39. T. Mikami, S. Kitamura, K. Yasuda, N. Tsuji, T. Oka, H. Aoki, Phys. Rev. B 93, 144307 (2016)

    Article  ADS  Google Scholar 

  40. T. Kuwahara, T. Mori, K. Saito, Ann. Phys. 367, 96 (2016)

    Article  ADS  Google Scholar 

  41. T. Mori, T. Kuwahara, K. Saito, Phys. Rev. Lett. 116, 120401 (2016)

    Article  ADS  Google Scholar 

  42. A. Lazarides, A. Das, R. Moessner, Phys. Rev. E 90, 012110 (2014)

    Article  ADS  Google Scholar 

  43. L. D’Alessio, M. Rigol, Phys. Rev. X 4, 041048 (2014)

    Google Scholar 

  44. S. Baierl, J.H. Mentink, M. Hohenleutner, L. Braun, T.-M. Do, C. Lange, A. Sell, M. Fiebig, G. Woltersdorf, T. Kampfrath, R. Huber, Phys. Rev. Lett. 117, 197201 (2016)

    Article  ADS  Google Scholar 

  45. J. Lu, X. Li, H.Y. Hwang, B.K. Ofori-Okai, T. Kurihara, T. Suemoto, K.A. Nelson, Phys. Rev. Lett. 118, 207204 (2017)

    Article  ADS  Google Scholar 

  46. A. Pimenov, A.A. Mukhin, V.Y. Ivanov, V.D. Travkin, A.M. Balbashov, A. Loidl, Nat. Phys. 2, 97 (2006)

    Article  Google Scholar 

  47. Y. Takahashi, R. Shimano, Y. Kaneko, H. Murakawa, Y. Tokura, Nat. Phys. 8, 121 (2011)

    Article  Google Scholar 

  48. T. Kubacka, J.A. Johnson, M.C. Hoffmann, C. Vicario, S. de Jong, P. Beaud, S. Grubel, S.-W. Huang, L. Huber, L. Patthey, Y.-D. Chuang, J.J. Turner, G.L. Dakovski, W.-S. Lee, M.P. Minitti, W. Schlotter, R.G. Moore, C.P. Hauri, S.M. Koohpayeh, V. Scagnoli, G. Ingold, S.L. Johnson, U. Staub, Science 343, 1333 (2014)

    Article  ADS  Google Scholar 

  49. A.A. Sirenko, P. Marsik, C. Bernhard, T.N. Stanislavchuk, V. Kiryukhin, S.-W. Cheong, Phys. Rev. Lett. 122, 237401 (2019)

    Article  ADS  Google Scholar 

  50. A. Pors, E. Moreno, L. Martin-Moreno, J.B. Pendry, F.J. Garcia-Vidal, Phys. Rev. Lett. 108, 223905 (2012)

    Article  ADS  Google Scholar 

  51. R.W. Heeres, V. Zwiller, Nano Lett. 14, 4598 (2014)

    Article  ADS  Google Scholar 

  52. T. Arikawa, S. Morimoto, K. Tanaka, Optics Express 25, 13728 (2017)

    Article  ADS  Google Scholar 

  53. P.S. Pershan, J.P. Van Der Ziei, L.D. Malmstrom, Phys. Rev. 143, 574 (1966)

    Article  ADS  Google Scholar 

  54. D.H. Dunlap, V.M. Kenkre, Phys. Rev. B 34, 3625 (1986)

    Article  ADS  Google Scholar 

  55. F. Grossmann, T. Dittrich, P. Jung, P. Hanggi, Phys. Rev. Lett. 67, 516 (1991)

    Article  ADS  Google Scholar 

  56. T. Ishikawa, Y. Sagae, Y. Naitoh, Y. Kawakami, H. Itoh, K. Yamamoto, K. Yakushi, H. Kishida, T. Sasaki, S. Ishihara, Y. Tanaka, K. Yonemitsu, S. Iwai, Nature Comm. 5, 5528 (2014)

    Article  ADS  Google Scholar 

  57. H. Lignier, C. Sias, D. Ciampini, Y. Singh, A. Zenesini, O. Morsch, E. Arimondo, Phys. Rev. Lett. 99, 220403 (2007)

    Article  ADS  Google Scholar 

  58. T. Oka, H. Aoki, Phys. Rev. B 79, 081406(R) (2009)

    Article  ADS  Google Scholar 

  59. T. Kitagawa, T. Oka, A. Brataas, L. Fu, E. Demler, Phys. Rev. B 84, 235108 (2011)

    Article  ADS  Google Scholar 

  60. N.H. Lindner, G. Refael, V. Galitski, Nature Phys. 7, 490 (2011)

    Article  ADS  Google Scholar 

  61. Y.H. Wang, H. Steinberg, P. Jarillo-Herrero, N. Gedik, Science 342, 453 (2013)

    Article  ADS  Google Scholar 

  62. I. Dzyaloshinskii, J. Phys. Chem. Solids 4, 241 (1958)

    Article  ADS  Google Scholar 

  63. T. Moriya, Phys. Rev. 120, 91 (1960)

    Article  ADS  Google Scholar 

  64. K. Yoshida, Theory of Magnetism (Springer, 1996)

    Google Scholar 

  65. T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, Y. Tokura, Nature 426, 55 (2003)

    Article  ADS  Google Scholar 

  66. H. Katsura, N. Nagaosa, A.V. Balatsky, Phys. Rev. Lett. 95, 057205 (2005)

    Article  ADS  Google Scholar 

  67. Y. Tokura, S. Seki, N. Nagaosa, Rep. Prog. Phys. 77, 076501 (2014)

    Article  ADS  Google Scholar 

  68. S. Takayoshi, H. Aoki, T. Oka, Phys. Rev. B 90, 085150 (2014)

    Article  ADS  Google Scholar 

  69. D. Huvonen, U. Nagel, T. Room, Y.J. Choi, C.L. Zhang, S. Park, S.-W. Cheong, Phys. Rev. B 80, 100402(R) (2009)

    Article  ADS  Google Scholar 

  70. S. Furukawa, M. Sato, S. Onoda, Phys. Rev. Lett. 105, 257205 (2010)

    Article  ADS  Google Scholar 

  71. Y.A. Kitaev, Ann. Phys. 321, 2 (2006)

    Article  ADS  Google Scholar 

  72. G. Jackeli, G. Khaliullin, Phys. Rev. Lett. 102, 017205 (2009)

    Article  ADS  Google Scholar 

  73. J. Chaloupka, G. Jackeli, G. Khaliullin, Phys. Rev. Lett. 105, 027204 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I would like to thank all the collaborators of our recent works for laser-driven phenomena, especially, Shintaro Takayoshi, Takashi Oka, Tatsuhiko N. Ikeda, Hiroaki Ishizuka, Horoyuki Fujita, and Sho Higashikawa. I was supported by JSPS KAKENHI (Grant No. 17K05513 and No. 20H01830) and a Grant-in-Aid for Scientific Research on Innovative Areas “Quantum Liquid Crystals” (Grant No. JP19H05825).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Sato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sato, M. (2021). Floquet Theory and Ultrafast Control of Magnetism. In: Kamenetskii, E. (eds) Chirality, Magnetism and Magnetoelectricity. Topics in Applied Physics, vol 138. Springer, Cham. https://doi.org/10.1007/978-3-030-62844-4_11

Download citation

Publish with us

Policies and ethics