Skip to main content

Automated Testing of Refreshable Braille Display

  • Conference paper
  • First Online:
Human-Centric Computing in a Data-Driven Society (HCC 2020)

Abstract

A majority of visually impaired population of India and other developing economies live in poverty. Accessibility without affordability has little meaning to this population. Assistive technology has great potential to make education accessible to this population, e.g. through refreshable Braille display devices. However, most existing solutions in this space remain out of reach for these users due to high cost. Innovation in data science and software engineering can play an important role in making assistive technological solutions affordable and accessible. In this paper, we present a machine-learning based automated testing approach that has played an important role in enabling us to design one of the most affordable refreshable Braille display devices of the world. The key component of our approach is a visual inspection module (VIM) created using Convolutional Neural Networks (CNNs). In our experiment, our model was able to detect malfunction of a Refreshable Braille display with 97.3% accuracy. Our model is small enough to be run on a battery-powered computer in real- time. Such accurate automatic testing methods have the potential to significantly reduce the cost of RBDs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Smart fm trials self-driving wheelchair (2017). https://smart.mit.edu/newsevents/smart-fm-trials-self-driving-wheelchair

  2. Abadi, M., et al.: Tensorflow: a system for large-scale machine learning. In: 12th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 2016), pp. 265–283 (2016)

    Google Scholar 

  3. Barbosa, J., Tavares, J., Cardoso, I., Alves, B., Martini, B.: Trailcare: An indoor and outdoor context-aware system to assist wheelchair users. Int. J. Hum. Comput. Stud. 116, 1–14 (2018)

    Article  Google Scholar 

  4. Blazie, D.: Refreshable braille now and in the years ahead. Braille Monit. 43(1), 1–6 (2000)

    Google Scholar 

  5. Bourne, R.R., et al.: Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: a systematic review and meta-analysis. Lancet Glob. Health 5(9), e888–e897 (2017)

    Article  Google Scholar 

  6. Bradski, G.: The opencv library. Dr Dobb’s J. Softw. Tools 25, 120–125 (2000)

    Google Scholar 

  7. Bryce, J.W., Wheeler, J.N.: Reading apparatus (1950). US Patent 2,521,338

    Google Scholar 

  8. Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF: binary robust independent elementary features. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 778–792. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15561-1_56

    Chapter  Google Scholar 

  9. Chakraborty, P., Mallik, A.: An open source tesseract based tool for extracting text from images with application in braille translation for the visually impaired. International Journal of Computer Applications 68(16) (2013)

    Google Scholar 

  10. Chin, R.T., Harlow, C.A.: Automated visual inspection: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 6, 557–573 (1982)

    Article  Google Scholar 

  11. Dharmarajan, R., Vijayasanthi, R.: An overview on data preprocessing methods in data mining. Int. J. Sci. Res. Dev. 3(3), 3544–3546 (2015)

    Google Scholar 

  12. Ertam, F., Aydın, G.: Data classification with deep learning using tensorflow. In: 2017 International Conference on Computer Science and Engineering (UBMK), pp. 755–758. IEEE (2017)

    Google Scholar 

  13. Esteva, A., et al.: Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639), 115–118 (2017)

    Article  Google Scholar 

  14. Gandhi, A.: Data augmentation: how to use deep learning when you have limited data (2019). https://nanonets.com/blog/data-augmentation-how-to-usedeep-learning-when-you-have-limited-data-part-2/

  15. Gibert, X., Patel, V.M., Chellappa, R.: Deep multitask learning for railway track inspection. IEEE Trans. Intell. Transp. Syst. 18(1), 153–164 (2016)

    Article  Google Scholar 

  16. Grunwald, A.P.: Reading and writing machine using raised patterns (1971). US Patent 3,624,772

    Google Scholar 

  17. Hartman, A., Nandikolla, V.K.: Human-machine interface for a smart wheelchair. J. Robot. 2019 (2019)

    Google Scholar 

  18. Jarvis, J.F.: A method for automating the visual inspection of printed wiring boards. IEEE Trans. Pattern Anal. Mach. Intell. 1, 77–82 (1980)

    Article  Google Scholar 

  19. Jorgensen, P.C.: Software Testing: A Craftsman’s Approach. Auerbach Publications, Boca Raton (2013)

    Book  Google Scholar 

  20. Kim, T.H., Cho, T.H., Moon, Y.S., Park, S.H.: Visual inspection system for the classification of solder joints. Pattern Recogn. 32(4), 565–575 (1999)

    Article  Google Scholar 

  21. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  22. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  23. McKeown, P., Cooke, P., Bailey, W.: The application of optics to the quality control of automotive components. In: Solving Quality Control and Reliability Problems with Optics, vol. 60, pp. 77–84. International Society for Optics and Photonics (1975)

    Google Scholar 

  24. Ortiz, A., Martínez-Murcia, F.J., García-Tarifa, M.J., Lozano, F., Górriz, J.M., Ramírez, J.: Automated diagnosis of parkinsonian syndromes by deep sparse filtering-based features. In: Chen, Y.-W., Tanaka, S., Howlett, R.J., Jain, L.C. (eds.) Innovation in Medicine and Healthcare 2016. SIST, vol. 60, pp. 249–258. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39687-3_24

    Chapter  Google Scholar 

  25. Pascolini, D., Mariotti, S.P.: Global estimates of visual impairment: 2010. Br. J. Ophthalmol. 96(5), 614–618 (2012)

    Article  Google Scholar 

  26. Ren, K., Liu, S., Lin, M., Wang, Y., Zhang, Q.: A compact electroactive polymer actuator suitable for refreshable braille display. Sens. Actuators, A 143(2), 335–342 (2008)

    Article  Google Scholar 

  27. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)

    Google Scholar 

  28. Roberts, J., Slattery, O., Kardos, D.: 49.2: rotating-wheel braille display for continuous refreshable braille. In: SID Symposium Digest of Technical Papers, vol. 31, pp. 1130–1133. Wiley Online Library (2000)

    Google Scholar 

  29. Rosten, E., Drummond, T.: Machine Learning for High-Speed Corner Detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 430–443. Springer, Heidelberg (2006). https://doi.org/10.1007/11744023_34

    Chapter  Google Scholar 

  30. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: An efficient alternative to SIFT or SURF. In: 2011 International Conference on Computer Vision, pp. 2564–2571. IEEE (2011)

    Google Scholar 

  31. Runyan, N., Blazie, D.: EAP actuators aid the quest for the ‘holy braille’ of tactile displays. In: Electroactive Polymer Actuators and Devices (EAPAD) 2010, vol. 7642, p. 764207. International Society for Optics and Photonics (2010)

    Google Scholar 

  32. Runyan, N., Nassimbene, E.: Alphanumeric ‘displays’ for the blind: a technology search. Technical report, IBM Technical Report, IBM Corp., Los Gatos, CA (1974)

    Google Scholar 

  33. Tretiakoff, O., Tretiakoff, A.: Electromechanical transducer for relief display panel (1977). US Patent 4,044,350

    Google Scholar 

  34. Vitoriano, P.M., Amaral, T.G., Dias, O.P.: Automatic optical inspection for surface mounting devices with IPC-A-610D compliance. In: 2011 International Conference on Power Engineering, Energy and Electrical Drives, pp. 1–7. IEEE (2011)

    Google Scholar 

  35. Wallace, G.G., Teasdale, P.R., Spinks, G.M., Kane-Maguire, L.A.: Conductive Electroactive Polymers: Intelligent Materials Systems. CRC Press, Boco Raton (2002)

    Book  Google Scholar 

  36. Wright, L.: Results of X-ray television inspection of electronic parts (1967)

    Google Scholar 

Download references

Acknowledgement

This work was supported by Karnataka Innovation Technology Society, Dept. of IT, BT and ST, Govt. of Karnataka

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shivam Kumar Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Singh, S.K., Chakrabarti, S.K., Jayagopi, D.B. (2020). Automated Testing of Refreshable Braille Display. In: Kreps, D., Komukai, T., Gopal, T.V., Ishii, K. (eds) Human-Centric Computing in a Data-Driven Society. HCC 2020. IFIP Advances in Information and Communication Technology, vol 590. Springer, Cham. https://doi.org/10.1007/978-3-030-62803-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62803-1_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62802-4

  • Online ISBN: 978-3-030-62803-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics