Skip to main content

Part of the book series: Springer Series in Reliability Engineering ((RELIABILITY))

  • 735 Accesses

Abstract

This chapter introduces the background and presents an overview of this book. Basically, engineering structures are required to satisfy predefined performance targets such as successfully resisting external load actions. Due to the randomness nature of both the structural property and the external attacks, however, the “absolute safety” of a structure cannot be achieved in engineering practice. Rather, the practical strategy is to control the probability of violating the performance requirements (e.g., structural safety) under an acceptable level. To that end, some probability-based approaches are essentially needed to quantify the occurrence possibility of such undesired consequences. Under this context, the mathematical formulation of analytical tools for structural reliability assessment is the topic of this book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akiyama M, Frangopol DM, Yoshida I (2010) Time-dependent reliability analysis of existing RC structures in a marine environment using hazard associated with airborne chlorides. Eng Struct 32(11):3768–3779. https://doi.org/10.1016/j.engstruct.2010.08.021

    Article  Google Scholar 

  2. Alvarez DA, Uribe F, Hurtado JE (2018) Estimation of the lower and upper bounds on the probability of failure using subset simulation and random set theory. Mech Syst Signal Process 100:782–801. https://doi.org/10.1016/j.ymssp.2017.07.040

    Article  Google Scholar 

  3. Ang AS, De Leon D (1997) Determination of optimal target reliabilities for design and upgrading of structures. Struct Saf 19(1):91–103. https://doi.org/10.1016/S0167-4730(96)00029-X

    Article  Google Scholar 

  4. Baudrit C, Dubois D, Perrot N (2008) Representing parametric probabilistic models tainted with imprecision. Fuzzy Sets Syst 159(15):1913–1928. https://doi.org/10.1016/j.fss.2008.02.013

    Article  MathSciNet  MATH  Google Scholar 

  5. Bhattacharya B, Li D, Chajes M (2008) Bridge rating using in-service data in the presence of strength deterioration and correlation in load processes. Struct Infrastruct Eng 4(3):237–249. https://doi.org/10.1080/15732470600753584

    Article  Google Scholar 

  6. Der Kiureghian A (2008) Analysis of structural reliability under parameter uncertainties. Prob Eng Mech 23(4):351–358. https://doi.org/10.1016/j.probengmech.2007.10.011

    Article  Google Scholar 

  7. Der Kiureghian A, Ditlevsen O (2009) Aleatory or epistemic? Does it matter? Struct Saf 31(2):105–112. https://doi.org/10.1016/j.strusafe.2008.06.020

    Article  Google Scholar 

  8. Ellingwood BR (2005) Risk-informed condition assessment of civil infrastructure: state of practice and research issues. Struct Infrastruct Eng 1(1):7–18. https://doi.org/10.1080/15732470412331289341

    Article  Google Scholar 

  9. Ellingwood BR, Kinali K (2009) Quantifying and communicating uncertainty in seismic risk assessment. Struct Saf 31(2):179–187. https://doi.org/10.1016/j.strusafe.2008.06.001

    Article  Google Scholar 

  10. Faber MH (2005) On the treatment of uncertainties and probabilities in engineering decision analysis. J Offshore Mech Arct Eng 127(3):243–248. https://doi.org/10.1115/1.1951776

    Article  Google Scholar 

  11. Ferson S, Kreinovich V, Ginzburg L, Myers DS, Sentz K (2003) Constructing probability boxes and dempster-shafer structures. Technical Report, SAND2002–4015, Sandia National Laboratories

    Google Scholar 

  12. Frangopol DM, Lin KY, Estes AC (1997) Life-cycle cost design of deteriorating structures. J Struct Eng 123(10):1390–1401. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:10(1390)

  13. Kumar R, Cline DB, Gardoni P (2015) A stochastic framework to model deterioration in engineering systems. Struct Saf 53:36–43. https://doi.org/10.1016/j.strusafe.2014.12.001

    Article  Google Scholar 

  14. Li Q, Wang C (2015) Updating the assessment of resistance and reliability of existing aging bridges with prior service loads. J Struct Eng 141(12):04015072. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001331

    Article  Google Scholar 

  15. Limbourg P, De Rocquigny E (2010) Uncertainty analysis using evidence theory-confronting level-1 and level-2 approaches with data availability and computational constraints. Reliab Eng Syst Saf 95(5):550–564. https://doi.org/10.1016/j.ress.2010.01.005

    Article  Google Scholar 

  16. Melchers RE, Beck AT (2018) Structural reliability analysis and prediction, 3rd edn. Wiley. https://doi.org/10.1002/9781119266105

  17. Möller B, Beer M (2013) Fuzzy randomness: uncertainty in civil engineering and computational mechanics. Springer Science & Business Media, Berlin

    Google Scholar 

  18. van Noortwijk JM, van der Weide JA, Kallen MJ, Pandey MD (2007) Gamma processes and peaks-over-threshold distributions for time-dependent reliability. Reliab Eng Syst Saf 92(12):1651–1658. https://doi.org/10.1016/j.ress.2006.11.003

    Article  Google Scholar 

  19. Oberkampf WL, Helton JC, Joslyn CA, Wojtkiewicz SF, Ferson S (2004) Challenge problems: uncertainty in system response given uncertain parameters. Reliab Eng Syst Saf 85(1–3):11–19. https://doi.org/10.1016/j.ress.2004.03.002

    Article  Google Scholar 

  20. Paté-Cornell ME (1996) Uncertainties in risk analysis: six levels of treatment. Reliab Eng Syst Saf 54(2–3):95–111. https://doi.org/10.1016/S0951-8320(96)00067-1

    Article  Google Scholar 

  21. Sanchez-Silva M, Klutke GA, Rosowsky DV (2011) Life-cycle performance of structures subject to multiple deterioration mechanisms. Struct Saf 33(3):206–217. https://doi.org/10.1016/j.strusafe.2011.03.003

    Article  Google Scholar 

  22. Stewart MG, Suo Q (2009) Extent of spatially variable corrosion damage as an indicator of strength and time-dependent reliability of RC beams. Eng Struct 31(1):198–207. https://doi.org/10.1016/j.engstruct.2008.08.011

    Article  Google Scholar 

  23. Wang C, Li Q, Zou A, Zhang L (2015) A realistic resistance deterioration model for time-dependent reliability analysis of aging bridges. J Zhejiang Univ Sci A 16(7):513–524. https://doi.org/10.1631/jzus.A1500018

    Article  Google Scholar 

  24. Wang C, Zhang H, Li Q (2017) Reliability assessment of aging structures subjected to gradual and shock deteriorations. Reliab Eng Syst Saf 161:78–86. https://doi.org/10.1016/j.ress.2017.01.014

    Article  Google Scholar 

  25. Wang C, Zhang H, Beer M (2018) Computing tight bounds of structural reliability under imprecise probabilistic information. Comput Struct 208:92–104. https://doi.org/10.1016/j.compstruc.2018.07.003

    Article  Google Scholar 

  26. Zhang H (2012) Interval importance sampling method for finite element-based structural reliability assessment under parameter uncertainties. Struct Saf 38:1–10. https://doi.org/10.1016/j.strusafe.2012.01.003

    Article  Google Scholar 

  27. Zhang H, Mullen RL, Muhanna RL (2010) Interval monte carlo methods for structural reliability. Struct Saf 32(3):183–190. https://doi.org/10.1016/j.strusafe.2010.01.001

    Article  Google Scholar 

  28. Zhang H, Liu H, Ellingwood BR, Rasmussen KJ (2018) System reliabilities of planar gravity steel frames designed by the inelastic method in AISC 360–10. J Struct Eng 144(3):04018011. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001991

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cao Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, C. (2021). Introduction. In: Structural Reliability and Time-Dependent Reliability. Springer Series in Reliability Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-62505-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62505-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62504-7

  • Online ISBN: 978-3-030-62505-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics