Skip to main content

Skeletal Muscle-Resident Pericyte Responses to Conditions of Use and Disuse

  • Chapter
  • First Online:
Biology of Pericytes – Recent Advances

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL,volume 68))

  • 326 Accesses

Abstract

Skeletal muscle structure and function are dependent on the presence or absence of mechanical cues in the tissue microenvironment. High intensity or sustained contractions can build muscle mass with exercise training, whereas bedrest or limb immobilization result in loss of muscle mass. Molecular signaling pathways, such as mTORC1 and induction of activating transcription factor 4 (ATF4), regulate intrinsic myofiber growth and atrophy respectively, yet the extent to which mononuclear cells outside the fiber contribute to muscle structure remodeling remains unclear. The skeletal muscle microenvironment is enriched with mononuclear cells, including progenitor and stem cells, fibroblasts, immune cells, and vascular stromal cells. All possess the potential to sense mechanical cues and contribute to structural remodeling, but the intricate positioning of vascular stromal cells around vessels make these cells particularly receptive to changes in mechanical stimuli due to alterations in both blood perfusion and contraction. Recent studies suggest that pericytes, a population of vascular stromal cells supporting capillaries and venules, are highly responsive to conditions of use and disuse. This chapter discusses the characteristics and behavior of skeletal muscle-derived pericytes as well as the specific responses to physiological stimuli with which muscle can be subjected. Determining how pericytes behave in situations of muscle activation and immobilization is important for the development of cell-based therapies for the treatment of skeletal muscle disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arentson-Lantz EJ, English KL, Paddon-Jones D, Fry CS (2016) Fourteen days of bed rest induces a decline in satellite cell content and robust atrophy of skeletal muscle fibers in middle-aged adults. J Appl Physiol 120:965–975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Armulik A, Abramsson A, Betsholtz C (2005) Endothelial/pericyte interactions. Circ Res 97:512–523

    Article  CAS  PubMed  Google Scholar 

  • Armulik A, Genové G, Betsholtz C (2011) Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell 21:193–215

    Article  CAS  PubMed  Google Scholar 

  • Atherton PJ, Greenhaff PL, Phillips SM et al (2016) Control of skeletal muscle atrophy in response to disuse: clinical/preclinical contentions and fallacies of evidence. Am J Physiol Endocrinol Metab 311:594–604

    Article  Google Scholar 

  • Biferali B, Proietti D, Mozzetta C, Madaro L (2019) Fibro–adipogenic progenitors cross-talk in skeletal muscle: the social network. Front Physiol 10:1074

    Article  PubMed  PubMed Central  Google Scholar 

  • Birbrair A, Zhang T, Wang ZM et al (2013) Role of pericytes in skeletal muscle regeneration and fat accumulation. Stem Cells Dev 22:2298–2314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birbrair A, Zhang T, Files DC et al (2014) Type-1 pericytes accumulate after tissue injury and produce collagen in an organ-dependent manner. Stem Cell Res Ther 5:122

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bodine SC (2013) Disuse-induced muscle wasting. Int J Biochem Cell Biol 45:2200–2208

    Article  CAS  PubMed  Google Scholar 

  • Boppart MD, De Lisio M, Zou K, Huntsman HD (2013) Defining a role for non-satellite stem cells in the regulation of muscle repair following exercise. Front Physiol 4:310

    Article  PubMed  PubMed Central  Google Scholar 

  • Brooks NE, Myburgh KH (2014) Skeletal muscle wasting with disuse atrophy is multi-dimensional: the response and interaction of myonuclei, satellite cells and signaling pathways. Front Physiol 5:99

    Article  PubMed  PubMed Central  Google Scholar 

  • Brooks MJ, Hajira A, Mohamed JS, Alway SE (2018) Voluntary wheel running increases satellite cell abundance and improves recovery from disuse in gastrocnemius muscles from mice. J Appl Physiol 124:1616–1628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caplan AI (2010) What’s in a name? Tissue Eng Part A 16:2415–2417

    Article  PubMed  Google Scholar 

  • Caplan AI, Correa D (2011) The MSC: an injury drugstore. Cell Stem Cell 9:11–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cappellari O, Cossu G (2013) Pericytes in development and pathology of skeletal muscle. Circ Res 113:341–347

    Article  CAS  PubMed  Google Scholar 

  • Chal J, Pourquié O (2017) Making muscle: Skeletal myogenesis in vivo and in vitro. Development 144:2104–2122

    Article  CAS  PubMed  Google Scholar 

  • Charville GW, Cheung TH, Yoo B et al (2015) Ex vivo expansion and in vivo self-renewal of human muscle stem cells. Stem Cell Rep 5:621–632

    Article  CAS  Google Scholar 

  • Costamagna D, Berardi E, Ceccarelli G, Sampaolesi M (2015) Adult stem cells and skeletal muscle regeneration. Curr Gene Ther 15:348–363

    Article  CAS  PubMed  Google Scholar 

  • Crisan M, Yap S, Casteilla L et al (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3:301–313

    Article  CAS  PubMed  Google Scholar 

  • De Lisio M, Farup J, Sukiennik RA et al (2015) The acute response of pericytes to muscle-damaging eccentric contraction and protein supplementation in human skeletal muscle. J Appl Physiol 119:900–907

    Article  PubMed  CAS  Google Scholar 

  • De Souza J, Gottfried C (2013) Muscle injury: review of experimental models. J Electromyogr Kinesiol 23:1253–1260

    Article  PubMed  Google Scholar 

  • Dellavalle A, Sampaolesi M, Tonlorenzi R et al (2007) Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells. Nat Cell Biol 9:255–267

    Article  CAS  PubMed  Google Scholar 

  • Dellavalle A, Maroli G, Covarello D et al (2011) Pericytes resident in postnatal skeletal muscle differentiate into muscle fibres and generate satellite cells. Nat Commun 2:499

    Article  CAS  PubMed  Google Scholar 

  • Díaz-Flores L, Gutiérrez R, Varela H (1992) Behavior of postcapillary venule pericytes during postnatal angiogenesis. J Morphol 213:33–45

    Article  PubMed  Google Scholar 

  • Díaz-Flores L, Gutiérrez R, Madrid JF et al (2009) Pericytes. Morphofunction, interactions and pathology in a quiescent and activated mesenchymal cell niche. Hist Histopathol 24:909–969

    Google Scholar 

  • Dumont NA, Bentzinger CF, Sincennes MC, Rudnicki MA (2015) Satellite cells and skeletal muscle regeneration. Compr Physiol 5:1027–1059

    Article  PubMed  Google Scholar 

  • Dvoretskiy S, Garg K, Munroe M et al (2019) The impact of skeletal muscle contraction on CD146+Lin pericytes. Am J Physiol Cell Physiol 317:1011–1024

    Article  CAS  Google Scholar 

  • Egner IM, Bruusgaard JC, Gundersen K (2016) Satellite cell depletion prevents fiber hypertrophy in skeletal muscle. Development 143:2898–2906

    Article  CAS  PubMed  Google Scholar 

  • Endo T (2015) Molecular mechanisms of skeletal muscle development, regeneration, and osteogenic conversion. Bone 80:2–13

    Article  CAS  PubMed  Google Scholar 

  • English KL, Paddon-Jones D (2010) Protecting muscle mass and function in older adults during bed rest. Curr Opin Clin Nutr Metab Care 13:34–39

    Article  PubMed  PubMed Central  Google Scholar 

  • Farup J, De Lisio M, Klejs Rahbek S et al (2015) Pericyte response to contraction mode-specific resistance exercise training in human skeletal muscle. J Appl Physiol 119:1053–1063

    Article  CAS  PubMed  Google Scholar 

  • Finnerty CC, McKenna CF, Cambias LA et al (2017) Inducible satellite cell depletion attenuates skeletal muscle regrowth following a scald-burn injury. J Physiol 595:6687–6701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forcina L, Miano C, Pelosi L, Musarò A (2019) An overview about the biology of skeletal muscle satellite cells. Curr Genomics 20:24–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frontera WR, Ochala J (2015) Skeletal muscle: a brief review of structure and function. Behav Genet 45:183–195

    Google Scholar 

  • Fry CS, Lee JD, Jackson JR et al (2014) Regulation of the muscle fiber microenvironment by activated satellite cells during hypertrophy. FASEB J 28:1654–1665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gautam J, Nirwane A, Yao Y (2017) Laminin differentially regulates the stemness of type I and type II pericytes. Stem Cell Res Ther 8:1–16

    Article  CAS  Google Scholar 

  • Gerhardt H, Betsholtz C (2003) Endothelial-pericyte interactions in angiogenesis. Cell Tissue Res 314:15–23

    Article  PubMed  Google Scholar 

  • Giannelli G, de Marzo A, Marinosci F, Antonaci S (2005) Matrix metalloproteinase imbalance in muscle disuse atrophy. Hist Histopathol 20:99–106

    Google Scholar 

  • Gillies AR, Lieber RL (2011) Structure and function of the skeletal muscle extracellular matrix. Muscle Nerve 44:318–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goh Q, Millay DP (2017) Requirement of myomaker-mediated stem cell fusion for skeletal muscle hypertrophy. Elife 6

    Google Scholar 

  • Guimarães-Camboa N, Cattaneo P, Sun Y et al (2017) Pericytes of multiple organs do not behave as mesenchymal stem cells in vivo. Cell Stem Cell 20:345–359

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Günther S, Kim J, Kostin S et al (2013) Myf5-positive satellite cells contribute to Pax7-dependent long-term maintenance of adult muscle stem cells. Cell Stem Cell 13:590–601

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hammers DW, Merscham-Banda M, Hsiao JY et al (2017) Supraphysiological levels of GDF11 induce striated muscle atrophy. EMBO Mol Med 9:531–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrell CR, Simovic Markovic B, Fellabaum C et al (2018) Molecular mechanisms underlying therapeutic potential of pericytes. J Biomed Sci 25:21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hawke TJ, Garry DJ (2001) Myogenic satellite cells: physiology to molecular biology. J Appl Physiol 91:534–551

    Article  CAS  PubMed  Google Scholar 

  • Huard J, Li Y, Fu FH (2002) Muscle injuries and repair: current trends in research. J Bone Joint Surg 84-A:822–832

    Article  Google Scholar 

  • Huntsman HD, Zachwieja N, Zou K et al (2013) Mesenchymal stem cells contribute to vascular growth in skeletal muscle in response to eccentric exercise. Am J Physiol Heart Circ Physiol 304:H72–H81

    Article  CAS  PubMed  Google Scholar 

  • Huntsman HD, Rendeiro C, Merritt JR et al (2018) The impact of mechanically stimulated muscle-derived stromal cells on aged skeletal muscle. Exp Gerontol 103:35–46

    Article  PubMed  Google Scholar 

  • Hyldahl RD, Xin L, Hubal MJ et al (2011) Activation of nuclear factor-κB following muscle eccentric contractions in humans is localized primarily to skeletal muscle-residing pericytes. FASEB J 25:2956–2966

    Article  CAS  PubMed  Google Scholar 

  • Itoh Y, Hayakawa K, Mori T et al (2014) Stand-up exercise training facilitates muscle recovery from disuse atrophy by stimulating myogenic satellite cell proliferation in mice. Physiol Rep 2

    Google Scholar 

  • Jackson JR, Mula J, Kirby TJ et al (2012) Satellite cell depletion does not inhibit adult skeletal muscle regrowth following unloading-induced atrophy. Am J Physiol Cell Physiol 303:854–861

    Article  CAS  Google Scholar 

  • Jankowski RJ, Deasy BM, Huard J (2002) Muscle-derived stem cells. Gene Ther 9:642–647

    Article  CAS  PubMed  Google Scholar 

  • Joe AWB, Yi L, Natarajan A et al (2010) Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis. Nat Cell Biol 12:153–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karstoft K, Pedersen BK (2016) Skeletal muscle as a gene regulatory endocrine organ. Curr Opin Clin Nutr Metab Care 19:270–275

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Jin P, Duan R, Chen EH (2015) Mechanisms of myoblast fusion during muscle development. Curr Opin Genet Dev 32:162–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirby TJ, Patel RM, McClintock TS et al (2016) Myonuclear transcription is responsive to mechanical load and DNA content but uncoupled from cell size during hypertrophy. Mol Biol Cell 27:788–798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kostallari E, Baba-Amer Y, Alonso-Martin S et al (2015) Pericytes in the myovascular niche promote post-natal myofiber growth and satellite cell quiescence. Development 142:1242–1253

    CAS  PubMed  Google Scholar 

  • Kutcher ME, Herman IM (2009) The pericyte: cellular regulator of microvascular blood flow. Microvasc Res 77:235–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lepper C, Partridge TA, Fan CM (2011) An absolute requirement for Pax7-positive satellite cells in acute injury-induced skeletal muscle regeneration. Development 138:3639–3646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li S, Hu GF (2012) Emerging role of angiogenin in stress response and cell survival under adverse conditions. J Cell Physiol 227:2822–2826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mann CJ, Perdiguero E, Kharraz Y et al (2011) Aberrant repair and fibrosis development in skeletal muscle. Skelet Muscle 1:21

    Article  PubMed  PubMed Central  Google Scholar 

  • Marg A, Escobar H, Karaiskos N et al (2019) Human muscle-derived CLEC14A-positive cells regenerate muscle independent of PAX7. Nat Commun 10:5776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mccarthy JJ, Mula J, Miyazaki M et al (2011) Effective fiber hypertrophy in satellite cell-depleted skeletal muscle. Development 138:3657–3666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitchell PO, Pavlath GK (2004) Skeletal muscle atrophy leads to loss and dysfunction of muscle precursor cells. Am J Physiol Cell Physiol 287:1753–1762

    Article  CAS  Google Scholar 

  • Montarras D, Morgan J, Collins C et al (2005) Direct isolation of satellite cells for skeletal muscle regeneration. Science 309:2064–2067

    Article  CAS  PubMed  Google Scholar 

  • Motohashi N, Asakura Y, Asakura A (2014) Isolation, culture, and transplantation of muscle satellite cells. J Vis Exp 86

    Google Scholar 

  • Munroe M, Dvoretskiy S, Lopez A et al (2019) Pericyte transplantation improves skeletal muscle recovery following hindlimb immobilization. FASEB J 33:7694–7706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murach KA, White SH, Wen Y et al (2017) Differential requirement for satellite cells during overload-induced muscle hypertrophy in growing versus mature mice. Skelet Muscle 7:14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Murach KA, Fry CS, Kirby TJ et al (2018) Starring or supporting role? Satellite cells and skeletal muscle fiber size regulation. Physiology 33:26–38

    Article  CAS  PubMed  Google Scholar 

  • Murphy MM, Lawson JA, Mathew SJ et al (2011) Satellite cells, connective tissue fibroblasts and their interactions are crucial for muscle regeneration. Development 138:3625–3637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakano M, Atobe Y, Goris RC et al (2000) Ultrastructure of the capillary pericytes and the expression of smooth muscle α-actin and desmin in the snake infrared sensory organs. Anat Rec 260:299–307

    Article  CAS  PubMed  Google Scholar 

  • Narici MV, de Boer MD (2011) Disuse of the musculo-skeletal system in space and on earth. Euro J Appl Physiol 111:403–420

    Article  CAS  Google Scholar 

  • Newlands S, Levitt LK, Robinson CS et al (1998) Transcription occurs in pulses in muscle fibers. Genes Dev 12:2748–2758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nirwane A, Gautam J, Yao Y (2017) Isolation of type I and type II pericytes from mouse skeletal muscles. J Vis Exp 123

    Google Scholar 

  • Otto A, Collins-Hooper H, Patel K (2009) The origin, molecular regulation and therapeutic potential of myogenic stem cell populations. J Anat 215:477–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pavlath GK, Rich K, Webster SG, Blau HM (1989) Localization of muscle gene products in nuclear domains. Nature 337:570–573

    Article  CAS  PubMed  Google Scholar 

  • Petrany MJ, Millay DP (2019) Cell fusion: merging membranes and making muscle. Trends Cell Biol 29:964–973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Relaix F, Zammit PS (2012) Satellite cells are essential for skeletal muscle regeneration: the cell on the edge returns Centre stage. Development 139:2845–2856

    Article  CAS  PubMed  Google Scholar 

  • Sacchetti B, Funari A, Remoli C et al (2016) No identical “mesenchymal stem cells” at different times and sites: human committed progenitors of distinct origin and differentiation potential are incorporated as adventitial cells in microvessels. Stem Cell Rep 6:897–913

    Article  CAS  Google Scholar 

  • Sambasivan R, Yao R, Kissenpfennig A et al (2011) Pax7-expressing satellite cells are indispensable for adult skeletal muscle regeneration. Development 138:3647–3656

    Article  CAS  PubMed  Google Scholar 

  • Sampaolesi M, Torrente Y, Innocenzi A et al (2003) Cell therapy of alpha-sarcoglycan null dystrophic mice through intra-arterial delivery of mesoangioblasts. Science 301:487–492

    Article  CAS  PubMed  Google Scholar 

  • Schwartz LM (2019) Skeletal muscles do not undergo apoptosis during either atrophy or programmed cell death-revisiting the myonuclear domain hypothesis. Front Physiol 9:1887

    Article  PubMed  PubMed Central  Google Scholar 

  • Snijders T, Wall BT, Dirks ML et al (2014) Muscle disuse atrophy is not accompanied by changes in skeletal muscle satellite cell content. Clin Sci 126:557–566

    Article  CAS  Google Scholar 

  • Suetta C, Frandsen U, Mackey AL et al (2013) Ageing is associated with diminished muscle re-growth and myogenic precursor cell expansion early after immobility-induced atrophy in human skeletal muscle. J Physiol 591:3789–3804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tidball JG (2005) Inflammatory processes in muscle injury and repair. Am J Physiol Regul Integr Comp Physiol 288:345–353

    Article  Google Scholar 

  • Uezumi A, Ito T, Morikawa D et al (2011) Fibrosis and adipogenesis originate from a common mesenchymal progenitor in skeletal muscle. J Cell Sci 124:3654–3664

    Article  CAS  PubMed  Google Scholar 

  • Valero MC, Huntsman HD, Liu J et al (2012) Eccentric exercise facilitates mesenchymal stem cell appearance in skeletal muscle. PLoS One 7:e29760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wall BT, Dirks ML, van Loon LJC (2013) Skeletal muscle atrophy during short-term disuse: implications for age-related sarcopenia. Ageing Res Rev 12:898–906

    Article  CAS  PubMed  Google Scholar 

  • Wosczyna MN, Konishi CT, Perez Carbajal EE et al (2019) Mesenchymal stromal cells are required for regeneration and homeostatic maintenance of skeletal muscle. Cell Rep 27:2029–2035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu X, Wilschut KJ, Kouklis G et al (2015) Human satellite cell transplantation and regeneration from diverse skeletal muscles. Stem Cell Reports 5:419–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin H, Price F, Rudnicki MA (2013) Satellite cells and the muscle stem cell niche. Physiol Rev 93:23–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou K, Huntsman HD, Carmen Valero M et al (2015) Mesenchymal stem cells augment the adaptive response to eccentric exercise. Med Sci Sports Exerc 47:315–325

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marni D. Boppart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Munroe, M., Dvoretskiy, S., Boppart, M.D. (2021). Skeletal Muscle-Resident Pericyte Responses to Conditions of Use and Disuse. In: Birbrair, A. (eds) Biology of Pericytes – Recent Advances. Stem Cell Biology and Regenerative Medicine, vol 68. Humana, Cham. https://doi.org/10.1007/978-3-030-62129-2_9

Download citation

Publish with us

Policies and ethics