Skip to main content

TLR-4 Signaling in Pericytes

  • Chapter
  • First Online:
Biology of Pericytes – Recent Advances

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124(4):783–801

    Article  CAS  Google Scholar 

  • Alex L, Frangogiannis NG (2019) Pericytes in the infarcted heart. Vasc Biol. https://doi.org/10.1530/vb-19-0007

  • Armulik A, Genové G, Betsholtz C (2011) Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell 21(2):193–215

    Article  CAS  Google Scholar 

  • Bagheri B, Sohrabi B, Akbar Movassaghpour A et al (2014) Hydrocortisone reduces toll-like receptor 4 expression on peripheral CD14+monocytes in patients undergoing percutanoues coronary intervention. Iran Biomed J. https://doi.org/10.6091/ibj.1275.2013

  • Balabanov R, Washington R, Wagnerova J, Dore-Duffy P (1996) CNS microvascular pericytes express macrophage-like function, cell surface integrin αM, and macrophage marker ED-2. Microvasc Res. https://doi.org/10.1006/mvre.1996.0049

  • Balabanov R, Beaumont T, Dore-Duffy P (1999) Role of central nervous system microvascular pericytes in activation of antigen-primed splenic T-lymphocytes. J Neurosci Res. https://doi.org/10.1002/(SICI)1097-4547(19990301)55:5<578::AID-JNR5>3.0.CO;2-E

  • Beamer LJ, Carroll SF, Eisenberg D (1997) Crystal structure of human BPI and two bound phospholipids at 2.4 angstrom resolution. Science 80. https://doi.org/10.1126/science.276.5320.1857

  • Brown LS, Foster CG, Courtney JM et al (2019) Pericytes and neurovascular function in the healthy and diseased brain. Front Cell Neurosci

    Google Scholar 

  • Caporali A, Martello A, Miscianinov V et al (2017) Contribution of pericyte paracrine regulation of the endothelium to angiogenesis. Pharmacol Ther 171:56–64

    Article  CAS  Google Scholar 

  • Castellano G, Stasi A, Intini A et al (2014) Endothelial dysfunction and renal fibrosis in endotoxemia-induced oliguric kidney injury: possible role of LPS-binding protein. Crit Care 18:520. https://doi.org/10.1186/s13054-014-0520-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Castellano G, Franzin R, Stasi A et al (2018) Complement activation during ischemia/reperfusion injury induces pericyte-to-myofibroblast transdifferentiation regulating peritubular capillary lumen reduction through pERK signaling. Front Immunol 9:1002. https://doi.org/10.3389/fimmu.2018.01002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castellano G, Stasi A, Franzin R et al (2019a) LPS-binding protein modulates acute renal fibrosis by inducing pericyte-to-myofibroblast trans-differentiation through TLR-4 signaling. Int J Mol Sci. https://doi.org/10.3390/ijms20153682

  • Castellano G, Franzin R, Sallustio F et al (2019b) Complement component C5a induces aberrant epigenetic modifications in renal tubular epithelial cells accelerating senescence by Wnt4/betacatenin signaling after ischemia/reperfusion injury. Aging (Albany NY) 11:4382–4406. https://doi.org/10.18632/aging.102059

    Article  CAS  Google Scholar 

  • Chaturvedi A, Pierce SK (2009) How location governs toll-like receptor signaling. Traffic 10(6):621–628

    Article  CAS  Google Scholar 

  • Chirico G, Cortinovis S, Fonte C, Giudici G (2007) Bacterial sepsis. J Chemother

    Google Scholar 

  • Danese S, Dejana E, Fiocchi C (2007) Immune regulation by microvascular endothelial cells: directing innate and adaptive immunity, coagulation, and inflammation. J Immunol. https://doi.org/10.4049/jimmunol.178.10.6017

  • Dias Moura Prazeres PH, Sena IFG, Borges I da T et al (2017) Pericytes are heterogeneous in their origin within the same tissue. Dev Biol 427(1):6–11

    Article  Google Scholar 

  • Ding HS, Yang J, Chen P et al (2013) The HMGB1-TLR4 axis contributes to myocardial ischemia/reperfusion injury via regulation of cardiomyocyte apoptosis. Gene. https://doi.org/10.1016/j.gene.2013.05.041

  • Duque GA, Descoteaux A (2014) Macrophage cytokines: involvement in immunity and infectious diseases. Front Immunol 5:491

    Google Scholar 

  • Edelman DA, Jiang Y, Tyburski J et al (2006) Toll-like receptor-4 message is up-regulated in lipopolysaccharide-exposed rat lung pericytes. J Surg Res. https://doi.org/10.1016/j.jss.2006.03.007

  • Edelman DA, Jiang Y, Tyburski JG et al (2007a) Lipopolysaccharide activation of pericyte’s toll-like receptor-4 regulates co-culture permeability. Am J Surg. https://doi.org/10.1016/j.amjsurg.2006.08.086

  • Edelman DA, Jiang Y, Tyburski JG et al (2007b) Cytokine production in lipopolysaccharide-exposed rat lung pericytes. J Trauma Inj Infect Crit Care. https://doi.org/10.1097/TA.0b013e31802dd712

  • Edfeldt K, Swedenborg J, Hansson GK, Yan Z (2002) Expression of toll-like receptors in human atherosclerotic lesions. Circulation. https://doi.org/10.1161/circ.105.10.1158

  • Fabry Z, Sandor M, Gajewski TF et al (1993) Differential activation of Th1 and Th2 CD4+ cells by murine brain microvessel endothelial cells and smooth muscle/pericytes. J Immunol 151(1):38–47

    CAS  PubMed  Google Scholar 

  • Fairweather D, Yusung S, Frisancho S et al (2003) IL-12 receptor β1 and toll-like receptor 4 increase IL-1β- and IL-18-associated myocarditis and coxsackievirus replication. J Immunol. https://doi.org/10.4049/jimmunol.170.9.4731

  • Fallach R, Shainberg A, Avlas O et al (2010) Cardiomyocyte toll-like receptor 4 is involved in heart dysfunction following septic shock or myocardial ischemia. J Mol Cell Cardiol. https://doi.org/10.1016/j.yjmcc.2010.02.020

  • Fani F, Regolisti G, Delsante M et al (2018) Recent advances in the pathogenetic mechanisms of sepsis-associated acute kidney injury. J Nephrol 31(3):351–359

    Article  CAS  Google Scholar 

  • Faure E, Thomas L, Xu H et al (2001) Bacterial lipopolysaccharide and IFN-γ induce toll-like receptor 2 and toll-like receptor 4 expression in human endothelial cells: role of NF-κB activation. J Immunol. https://doi.org/10.4049/jimmunol.166.3.2018

  • Fiorentino M, Grandaliano G, Gesualdo L, Castellano G (2018) Acute kidney injury to chronic kidney disease transition. Contrib Nephrol 193:45–54. https://doi.org/10.1159/000484962

    Article  CAS  PubMed  Google Scholar 

  • Foster K, Sheridan J, Veiga-Fernandes H et al (2008) Contribution of neural crest-derived cells in the embryonic and adult Thymus. J Immunol. https://doi.org/10.4049/jimmunol.180.5.3183

  • Frantz S, Kobzik L, Kim YD et al (1999) Toll4 (TLR4) expression in cardiac myocytes in normal and failing myocardium. J Clin Invest. https://doi.org/10.1172/JCI6709

  • Fu X, Khalil H, Kanisicak O et al (2018) Specialized fibroblast differentiated states underlie scar formation in the infarcted mouse heart. J Clin Invest. https://doi.org/10.1172/JCI98215

  • Gaengel K, Genové G, Armulik A, Betsholtz C (2009) Endothelial-mural cell signaling in vascular development and angiogenesis. Arterioscler Thromb Vasc Biol 29(5):630–638

    Article  CAS  Google Scholar 

  • Göritz C, Dias DO, Tomilin N et al (2011) A pericyte origin of spinal cord scar tissue. Science 80. https://doi.org/10.1126/science.1203165

  • Greenhalgh SN, Iredale JP, Henderson NC (2013) Origins of fibrosis: Pericytes take centre stage. F1000Prime Rep. https://doi.org/10.12703/P5-37

  • Greenhalgh SN, Conroy KP, Henderson N (2015) Healing scars: targeting pericytes to treat fibrosis. QJM 108(1):3–7

    Article  CAS  Google Scholar 

  • Guijarro-Muñoz I, Compte M, Álvarez-Cienfuegos A et al (2014) Lipopolysaccharide activates toll-like receptor 4 (TLR4)-mediated NF-κB signaling pathway and proinflammatory response in human pericytes. J Biol Chem. https://doi.org/10.1074/jbc.M113.521161

  • Hanke ML, Kielian T (2011) Toll-like receptors in health and disease in the brain: mechanisms and therapeutic potential. Clin Sci 121(9):367–387

    Article  CAS  Google Scholar 

  • Harrell CR, Simovic Markovic B, Fellabaum C et al (2018) Molecular mechanisms underlying therapeutic potential of pericytes. J Biomed Sci 25(1):21

    Article  Google Scholar 

  • He Z, Zhu Y, Jiang H (2009a) Toll-like receptor 4 mediates lipopolysaccharide-induced collagen secretion by phosphoinositide3-kinase-akt pathway in fibroblasts during acute lung injury. J Recept Signal Transduct. https://doi.org/10.1080/10799890902845690

  • He ZY, Sen ZY, Jiang H (2009b) Inhibiting toll-like receptor 4 signaling ameliorates pulmonary fibrosis during acute lung injury induced by lipopolysaccharide: an experimental study. Respir Res. https://doi.org/10.1186/1465-9921-10-126

  • Heppner FL, Ransohoff RM, Becher B (2015) Immune attack: the role of inflammation in Alzheimer disease. Nat Rev Neurosci 16(6):358–372

    Article  CAS  Google Scholar 

  • Herland A, Van Der Meer AD, FitzGerald EA et al (2016) Distinct contributions of astrocytes and pericytes to neuroinflammation identified in a 3D human blood-brain barrier on a chip. PLoS One. https://doi.org/10.1371/journal.pone.0150360

  • Horner PJ, Gage FH (2002) Regeneration in the adult and aging brain. Arch Neurol

    Google Scholar 

  • Hung C, Linn G, Chow YH et al (2013) Role of lung pericytes and resident fibroblasts in the pathogenesis of pulmonary fibrosis. Am J Respir Crit Care Med. https://doi.org/10.1164/rccm.201212-2297OC

  • Hung CF, Mittelsteadt KL, Brauer R et al (2017a) Lung pericyte-like cells are functional interstitial immune sentinel cells. Am J Physiol Lung Cell Mol Physiol. https://doi.org/10.1152/ajplung.00349.2016

  • Hung CF, Chow YH, Liles WC et al (2017b) Ablation of pericyte-like cells in lungs by oropharyngeal aspiration of diphtheria toxin. Am J Respir Cell Mol Biol. https://doi.org/10.1165/rcmb.2016-0083MA

  • Jansson D, Rustenhoven J, Feng S et al (2014) A role for human brain pericytes in neuroinflammation. J Neuroinflammation. https://doi.org/10.1186/1742-2094-11-104

  • Kawasaki K, Akashi S, Shimazu R et al (2000) Mouse toll-like receptor 4·MD-2 complex mediates lipopolysaccharide- mimetic signal transduction by Taxol. J Biol Chem. https://doi.org/10.1074/jbc.275.4.2251

  • Keynan Y, Fowke KR, Ball TB, Meyers AFA (2011) Toll-like receptors dysregulation after influenza virus infection: insights into pathogenesis of subsequent bacterial pneumonia. ISRN Pulmonol. https://doi.org/10.5402/2011/142518

  • Khakpour S, Wilhelmsen K, Hellman J (2015) Vascular endothelial cell toll-like receptor pathways in sepsis. Innate Immun 21(8):827–846

    Article  CAS  Google Scholar 

  • Kramann R, Schneider RK, DiRocco DP et al (2015) Perivascular Gli1+ progenitors are key contributors to injury-induced organ fibrosis. Cell Stem Cell 16:51–66. https://doi.org/10.1016/j.stem.2014.11.004

    Article  CAS  PubMed  Google Scholar 

  • Krueger M, Bechmann I (2010) CNS pericytes: concepts, misconceptions, and a way out. Glia 58(1):1–10

    Article  Google Scholar 

  • Kuzmich NN, Sivak KV, Chubarev VN et al (2017) TLR4 signaling pathway modulators as potential therapeutics in inflammation and sepsis. Vaccine 5(4):34

    Article  Google Scholar 

  • Leaf IA, Nakagawa S, Johnson BG et al (2017) Pericyte MyD88 and IRAK4 control inflammatory and fibrotic responses to tissue injury. J Clin Invest. https://doi.org/10.1172/JCI87532

  • Levéen P, Pekny M, Gebre-Medhin S et al (1994) Mice deficient for PDGF B show renal, cardiovascular, and hematological abnormalities. Genes Dev. https://doi.org/10.1101/gad.8.16.1875

  • Lévesque SA, Paré A, Mailhot B et al (2016) Myeloid cell transmigration across the CNS vasculature triggers IL-1ß-driven neuroinflammation during autoimmune encephalomyelitis in mice. J Exp Med. https://doi.org/10.1084/jem.20151437

  • Liu L, Wang Y, Cao ZY et al (2015) Up-regulated TLR4 in cardiomyocytes exacerbates heart failure after long-term myocardial infarction. J Cell Mol Med. https://doi.org/10.1111/jcmm.12659

  • Lotze MT, Tracey KJ (2005) High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat Rev Immunol

    Google Scholar 

  • Mai J, Virtue A, Shen J et al (2013) An evolving new paradigm: endothelial cells – conditional innate immune cells. J Hematol Oncol

    Google Scholar 

  • Medzhitov R (2001) Toll-like receptors and innate immunity. Nat Rev Immunol 1:135–145

    Article  CAS  Google Scholar 

  • Mikawa T, Gourdie RG (1996) Pericardial mesoderm generates a population of coronary smooth muscle cells migrating into the heart along with ingrowth of the epicardial organ. Dev Biol. https://doi.org/10.1006/dbio.1996.0068

  • Milesi S, Boussadia B, Plaud C et al (2014) Redistribution of PDGFRβ cells and NG2DsRed pericytes at the cerebrovasculature after status epilepticus. Neurobiol Dis. https://doi.org/10.1016/j.nbd.2014.07.010

  • Mogensen TH (2009) Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev 22(2):240–273

    Article  CAS  Google Scholar 

  • Moore BB, Lawson WE, Oury TD et al (2013) Animal models of fibrotic lung disease. Am J Respir Cell Mol Biol 49(2):167–179

    Article  CAS  Google Scholar 

  • Munford RS (2008) Sensing gram-negative bacterial lipopolysaccharides: a human disease determinant? Infect Immun

    Google Scholar 

  • Murray IR, Baily JE, Chen WCW et al (2017) Skeletal and cardiac muscle pericytes: functions and therapeutic potential. Pharmacol Ther 171:65–74

    Article  CAS  Google Scholar 

  • Navarro R, Compte M, Álvarez-Vallina L, Sanz L (2016) Immune regulation by pericytes: modulating innate and adaptive immunity. Front Immunol 7:480

    Article  Google Scholar 

  • Netti GS, Sangregorio F, Spadaccino F et al (2019) LPS removal reduces CD80-mediated albuminuria in critically ill patients with gram-negative sepsis. Am J Physiol Ren Physiol. https://doi.org/10.1152/ajprenal.00491.2018

  • Nielsen CM, Dymecki SM (2010) Sonic hedgehog is required for vascular outgrowth in the hindbrain choroid plexus. Dev Biol. https://doi.org/10.1016/j.ydbio.2010.01.032

  • Nishimura M, Naito S (2005) Tissue-specific mRNA expression profiles of human toll-like receptors and related genes. Biol Pharm Bull. https://doi.org/10.1248/bpb.28.886

  • Nyúl-Tóth Á, Kozma M, Nagyőszi P et al (2017) Expression of pattern recognition receptors and activation of the non-canonical inflammasome pathway in brain pericytes. Brain Behav Immun. https://doi.org/10.1016/j.bbi.2017.04.010

  • O’Farrel FM, Mastitskaya S, Hammond-Haley M et al (2017) Capillary pericytes mediate coronary no-reflow after myocardial ischaemia. elife. https://doi.org/10.7554/eLife.29280

  • O’Farrell FM, Attwell D (2014) A role for pericytes in coronary no-reflow. Nat Rev Cardiol 11(7):427–432

    Article  Google Scholar 

  • Okamura Y, Watari M, Jerud ES et al (2001) The extra domain a of fibronectin activates toll-like receptor 4. J Biol Chem 276:10229–10233. https://doi.org/10.1074/jbc.M100099200. M100099200 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Peng Q, Wu W, Wu KY et al (2019) The C5a/C5aR1 axis promotes progression of renal tubulointerstitial fibrosis in a mouse model of renal ischemia/reperfusion injury. Kidney Int. https://doi.org/10.1016/j.kint.2019.01.039

  • Pieper C, Marek JJ, Unterberg M et al (2014) Brain capillary pericytes contribute to the immune defense in response to cytokines or LPS in vitro. Brain Res. https://doi.org/10.1016/j.brainres.2014.01.004

  • Pober JS, Sessa WC (2015) Inflammation and the blood microvascular system. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a016345

  • Proebstl D, Voisin MB, Woodfin A et al (2012) Pericytes support neutrophil subendothelial cell crawling and breaching of venular walls in vivo. J Exp Med. https://doi.org/10.1084/jem.20111622

  • Rowley JE, Johnson JR (2014) Pericytes in chronic lung disease. Int Arch Allergy Immunol 164(3):178–188

    Article  CAS  Google Scholar 

  • Rudziak P, Ellis CG, Kowalewska PM (2019) Role and molecular mechanisms of pericytes in regulation of leukocyte diapedesis in inflamed tissues. Mediat Inflamm

    Google Scholar 

  • Rustenhoven J, Jansson D, Smyth LC, Dragunow M (2017) Brain pericytes as mediators of neuroinflammation. Trends Pharmacol Sci 38(3):291–304

    Article  CAS  Google Scholar 

  • Sakuma R, Kawahara M, Nakano-Doi A et al (2016) Brain pericytes serve as microglia-generating multipotent vascular stem cells following ischemic stroke. J Neuroinflammation. https://doi.org/10.1186/s12974-016-0523-9

  • Sarnak MJ (2014) A patient with heart failure and worsening kidney function. Clin J Am Soc Nephrol. https://doi.org/10.2215/CJN.11601113

  • Satoh S, Yada R, Inoue H et al (2016) Toll-like receptor-4 is upregulated in plaque debris of patients with acute coronary syndrome more than toll-like receptor-2. Heart Vessel. https://doi.org/10.1007/s00380-014-0565-9

  • Sava P, Ramanathan A, Dobronyi A et al (2017) Human pericytes adopt myofibroblast properties in the microenvironment of the IPF lung. JCI Insight. https://doi.org/10.1172/jci.insight.96352

  • Schumann RR, Leong SR, Flaggs GW et al (1990) Structure and function of lipopolysaccharide binding protein. Science 80. https://doi.org/10.1126/science.2402637

  • Scrascia G, Rotunno C, Simone S et al (2017) Acute kidney injury in high-risk cardiac surgery patients: roles of inflammation and coagulation. J Cardiovasc Med. https://doi.org/10.2459/JCM.0000000000000343

  • Shaw I, Rider S, Mullins J et al (2018) Pericytes in the renal vasculature: roles in health and disease. Nat Rev Nephrol 14(8):521–534

    Article  CAS  Google Scholar 

  • Shepro D, Morel NML (1993) Pericyte physiology. FASEB J 7(11):1031–1038

    Article  CAS  Google Scholar 

  • Siao CJ, Lorentz CU, Kermani P et al (2012) ProNGF, a cytokine induced after myocardial infarction in humans, targets pericytes to promote microvascular damage and activation. J Exp Med. https://doi.org/10.1084/jem.20111749

  • Simone S, Rascio F, Castellano G et al (2014) Complement-dependent NADPH oxidase enzyme activation in renal ischemia/reperfusion injury. Free Radic Biol Med 74:263–273. https://doi.org/10.1016/j.freeradbiomed.2014.07.003

    Article  CAS  PubMed  Google Scholar 

  • Smyth LCD, Rustenhoven J, Park TIH et al (2018) Unique and shared inflammatory profiles of human brain endothelia and pericytes. J Neuroinflammation. https://doi.org/10.1186/s12974-018-1167-8

  • Song N, Huang Y, Shi H et al (2009) Overexpression of platelet-derived growth factor-BB increases tumor pericyte content via stromal-derived factor-1α/CXCR4 axis. Cancer Res. https://doi.org/10.1158/0008-5472.CAN-08-2007

  • Souza ACP, Tsuji T, Baranova IN et al (2015) TLR4 mutant mice are protected from renal fibrosis and chronic kidney disease progression. Physiol Rep 3:e12558. https://doi.org/10.14814/phy2.12558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stark K, Eckart A, Haidari S et al (2013) Capillary and arteriolar pericytes attract innate leukocytes exiting through venules and “instruct” them with pattern-recognition and motility programs. Nat Immunol. https://doi.org/10.1038/ni.2477

  • Stark K, Pekayvaz K, Massberg S (2018) Role of pericytes in vascular immunosurveillance. Front Biosci Landmark. https://doi.org/10.2741/4615

  • Stasi A, Intini A, Divella C, et al (2016) Emerging role of Lipopolysaccharide binding protein in sepsis-induced acute kidney injury. Nephrol Dial Transplant gfw250. https://doi.org/10.1093/ndt/gfw250

  • Stefanska A, Eng D, Kaverina N et al (2015) Interstitial pericytes decrease in aged mouse kidneys. Aging (Albany NY). https://doi.org/10.18632/aging.100756

  • Stefanska A, Kenyon C, Christian HC et al (2016) Human kidney pericytes produce renin. Kidney Int. https://doi.org/10.1016/j.kint.2016.07.035

  • Stratman AN, Schwindt AE, Malotte KM, Davis GE (2010) Endothelial-derived PDGF-BB and HB-EGF coordinately regulate pericyte recruitment during vasculogenic tube assembly and stabilization. Blood. https://doi.org/10.1182/blood-2010-05-286872

  • Sundberg C, Ivarsson M, Gerdin B, Rubin K (1996) Pericytes as collagen-producing cells in excessive dermal scarring. Lab Investig 74(2):452–466

    CAS  PubMed  Google Scholar 

  • Suresh R, Mosser DM (2013) Pattern recognition receptors in innate immunity, host defense, and immunopathology. Am J Physiol Adv Physiol Educ. https://doi.org/10.1152/advan.00058.2013

  • Tavener SA, Long EM, Robbins SM et al (2004) Immune cell toll-like receptor 4 is required for cardiac myocyte impairment during endotoxemia. Circ Res. https://doi.org/10.1161/01.RES.0000144175.70140.8c

  • Terrell AM, Crisostomo PR, Wairiuko GM et al (2006) JAK/STAT/SOCS signaling circuits and associated cytokine-mediated inflammation and hypertrophy in the heart. Shock 26(3):226–234

    Article  CAS  Google Scholar 

  • Wang Q, Wang J, Wang J et al (2017) HMGB1 induces lung fbroblast to myofbroblast differentiation through NF-κB-mediated TGF-β1 release. Mol Med Rep. https://doi.org/10.3892/mmr.2017.6364

  • Williams DL, Ozment-Skelton T, Li C (2006) Modulation of the phosphoinositide 3-kinase signaling pathway alters host response to sepsis, inflammation, and ischemia/reperfusion injury. Shock 25(5):432–439

    Article  CAS  Google Scholar 

  • Winkler EA, Bell RD, Zlokovic BV (2011) Central nervous system pericytes in health and disease. Nat Neurosci 14(11):1398–1405

    Article  CAS  Google Scholar 

  • Wynn TA (2008) Cellular and molecular mechanisms of fibrosis. J Pathol 214(2):199–210

    Article  CAS  Google Scholar 

  • Wynn TA (2011) Integrating mechanisms of pulmonary fibrosis. J Exp Med. https://doi.org/10.1084/jem.20110551

  • Xavier S, Sahu RK, Landes SG et al (2017) Pericytes and immune cells contribute to complement activation in tubulointerstitial fibrosis. Am J Physiol Physiol 312:F516–F532. https://doi.org/10.1152/ajprenal.00604.2016

    Article  CAS  Google Scholar 

  • Yamazaki T, Nalbandian A, Uchida Y et al (2017) Tissue myeloid progenitors differentiate into pericytes through TGF-β signaling in developing skin vasculature. Cell Rep. https://doi.org/10.1016/j.celrep.2017.02.069

  • Yang Y, Lv J, Jiang S et al (2016) The emerging role of toll-like receptor 4 in myocardial inflammation. Cell Death Dis 7(5):e2234

    Article  CAS  Google Scholar 

  • Youn JH, Oh YJ, Kim ES et al (2008) High mobility group box 1 protein binding to lipopolysaccharide facilitates transfer of lipopolysaccharide to CD14 and enhances lipopolysaccharide-mediated TNF-α production in human monocytes. J Immunol. https://doi.org/10.4049/jimmunol.180.7.5067

  • Zeng H, He X, Tuo QH et al (2016) LPS causes pericyte loss and microvascular dysfunction via disruption of Sirt3/angiopoietins/Tie-2 and HIF-2α/Notch3 pathways. Sci Rep. https://doi.org/10.1038/srep20931

Download references

Acknowledgements

The authors thank Chiara Divella for excellent technical assistance.

Compliance with Ethical Standards

Funding

Supported by University of Bari ‘Aldo Moro’, University of Foggia, the Italian Ministry of Health (Giovani Ricercatori 2011–2012, GR-2011-02351027, granted to G.C.) and Fondo Sociale Europeo, Azione I.2 “Attrazione e Mobilità Internazionale dei Ricercatori” (AIM-1810057-activity 2 granted to A.S.).

Disclosure of Interests

All authors declare they have no conflict of interest.

Ethical Approval

The animal studies described in this chapter were approved by Ethical Committee of the Italian Ministry of Health, Prot. N823/2016-PR and Ministero della Salute (Ricerca Finalizzata 2009, GR-2009-1,608662 as indicated in the references (Castellano et al. 2014, 2018, 2019a).

Informed Consent

Informed consent for participation and publication was obtained from all individual participants included in the study. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Castellano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stasi, A. et al. (2021). TLR-4 Signaling in Pericytes. In: Birbrair, A. (eds) Biology of Pericytes – Recent Advances. Stem Cell Biology and Regenerative Medicine, vol 68. Humana, Cham. https://doi.org/10.1007/978-3-030-62129-2_7

Download citation

Publish with us

Policies and ethics