Skip to main content

The Genetics of Multiple Sclerosis

  • Chapter
  • First Online:
Neuroimmunology

Abstract

Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) that is characterized by injury to the myelin sheath and subsequent neurodegeneration. The growing field of MS genetics has found that MS is at least partially heritable, with genetic risk factors that overlap with other autoimmune diseases, such as rheumatoid arthritis or type 1 diabetes. By leveraging tens of thousands of samples, more than 230 genetic risk factors have been identified for MS. Genome-wide association studies (GWAS) have helped identify important non-HLA genetic risk factors, while a growing body of work has identified both protective and risk factors located on HLA genes. This has led to more questions concerning how gene-gene or gene-environment interactions may impact MS risk and development. While these areas of inquiry have proven to be very challenging, some gene-environment interactions have been reported, and some genetic factors have been associated with relapse rate and regions of lesion burden. Mendelian randomization experiments have been successfully employed to use genetic drivers of environmental risk factors to support causal associations between these factors and MS risk, eliminating concerns for reverse causation. The study of MS genetics has led to critical insights to the pathophysiology of the disease, and future work will help to determine what shapes an individual’s experience of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Compston A, Coles A. Multiple Sclerosis. Lancet. 2008;372(9648):1502–17.

    Article  CAS  PubMed  Google Scholar 

  2. Hauser SL, Goodwin DS. Multiple sclerosis and other demyelinating diseases. In: Kasper D, Fauci A, Hauser S, Longo D, Jameson LJ, Loscalzo J, editors. Harrison’s principles of internal medicine. 19th ed. New York: McGaw-Hill Education/Medical; 2015. p. 3395–409.

    Google Scholar 

  3. Hedstrom AK, Alfredsson L, Olsson T. Environmental factors and their interactions with risk genotypes in MS susceptibility. Curr Opin Neurol. 2016;29(3):293–8.

    Article  CAS  PubMed  Google Scholar 

  4. Hedstrom AK, Olsson T, Alfredsson L. Smoking is a major preventable risk factor for multiple sclerosis. Mult Scler. 2016;22(8):1021–6.

    Article  CAS  PubMed  Google Scholar 

  5. Lawlor DA, Harbord RM, Sterne JA, Timpson N, Davey Smith G. Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat Med. 2008;27:1133–63.

    Article  PubMed  Google Scholar 

  6. International Multiple Sclerosis Genetics Consortium; Welcome Trust Case Control Consortium 2, Sawcer S, Hellenthal G, Pirinen M, Spencer CCA, Patsopoulos NA, Moutsianas L, et al. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature. 2011;476:214–9.

    Article  CAS  Google Scholar 

  7. International Multiple Sclerosis Genetics Consortium. Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility. Science. 2019;365(6460):eaav7188.

    Article  PubMed Central  CAS  Google Scholar 

  8. Boomsma D, Busjahn A, Peltonen L. Classical twin studies and beyond. Nat Rev Genet. 2002;3(11):872–82. https://doi.org/10.1038/nrg932.

    Article  CAS  PubMed  Google Scholar 

  9. Sadovnick AD, Baird PA. The familial nature of multiple sclerosis: age-corrected empiric recurrence risks for children and siblings of patients. Neurology. 1988;38(6):990–1.

    Article  CAS  PubMed  Google Scholar 

  10. Willer CJ, Dyment DA, Risch NJ, Sadovnick AD, Ebers GC, Canadian Collaborative Study Group. Twin concordance and sibling recurrence rates in multiple sclerosis. Proc Natl Acad Sci U S A. 2003;100(22):12877–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Heltberg A, Holm NV. Concordance in twins and recurrence in siblings in multiple sclerosis. Lancet. 1982;1:1068.

    Google Scholar 

  12. Ebers GC, Sadovnick AD, Risch NJ. A genetic basis for familial aggregation in multiple sclerosis. Canadian Collaborative Study Group. Nature. 1995;377(6545):150–1.

    Article  CAS  PubMed  Google Scholar 

  13. Ebers GC, Yee IM, Sadovnick AD, Duquette P. Conjugal multiple sclerosis: population-based prevalence and recurrence risks in offspring. Canadian Collaborative Study Group. Ann Neurol. 2000;48(6):927–31.

    Article  CAS  PubMed  Google Scholar 

  14. Bulman DE, Sadovnick AD, Ebers GC. Age of onset in siblings concordant for multiple sclerosis. Brain. 1991;114(pt 2):937–50.

    Article  PubMed  Google Scholar 

  15. Doolittle TH, Myers RH, Lehrich JR, Birnbaum G, Sheremata W, Franklin GM, et al. Multiple sclerosis sibling pairs: clustered onset and familial predisposition. Neurology. 1990;40(10):1546–52.

    Article  CAS  PubMed  Google Scholar 

  16. Fagnani C, Neale MC, Nistico L, Stazi MA, Ricigliano VA, Buscarinu MC, et al. Twin studies in multiple sclerosis: a meta-estimation of heritability and environmentality. Mult Scler. 2015;21(11):1404–13.

    Article  CAS  PubMed  Google Scholar 

  17. Graves JS, Chitnis T, Weinstock-Guttman B, Rubin J, Zelikovitch AS, Nourbakhsh B, Network of Pediatric Multiple Sclerosis Centers, et al. Maternal and perinatal exposures are associated with risk for pediatric-onset multiple sclerosis. Pediatrics. 2017;139:e20162838.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Sadovnick AD, Armstrong H, Rice GP, Bulman D, Hashimoto L, Paty DW, et al. A population-based study of multiple sclerosis in twins: update. Ann Neurol. 1993;33(3):281–5.

    Article  CAS  PubMed  Google Scholar 

  19. Mumford CJ, Wood NW, Kellar-Wood H, Thorpe JW, Miller DH, Compston DA. The British Isles survey of multiple sclerosis in twins. Neurology. 1994;44(1):11–5.

    Article  CAS  PubMed  Google Scholar 

  20. Küçükali Cİ, Kürtüncü M, Çoban A, Çebi M, Tüzün E. Epigenetics of multiple sclerosis: an updated review. NeuroMolecular Med. 2015;17:83–96.

    Article  PubMed  CAS  Google Scholar 

  21. Madsen PM, Pinto M, Patel S, McCarthy S, Gao H, Taherian M, et al. Mitochondrial DNA double-strand breaks in oligodendrocytes cause demyelination, axonal injury, and CNS inflammation. J Neurosci. 2017;37(42):10185–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mahad D, Lassmann H, Turnbull D. Review: mitochondria and disease progression in multiple sclerosis. Neuropathol Appl Neurobiol. 2008;34:577–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ban M, Elson J, Walton A, Turnbull D, Compston A, Chinnery P, Sawcer S. Investigation of the role of mitochondrial DNA in multiple sclerosis susceptibility. PLoS One. 2008;3(8):e2891.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Tranah GJ, Santaniello A, Caillier SJ, D’Alfonso S, Martinelli Boneschi F, Hauser SL, Oksenberg JR. Mitochondrial DNA sequence variation in multiple sclerosis. Neurology. 2015;85:325–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nepom GT. The major histocompatibility complex. In: Jameson J, Fauci AS, Kasper DL, Hauser SL, Longo DL, Loscalzo J, editors. Harrison’s principles of internal medicine, vol. 20e. New York: McGraw-Hill; 2018.

    Google Scholar 

  26. Murphy K, Travers P, Walport M, Janeway C. Janeway’s immunobiology. New York: Garland Science; 2012.

    Google Scholar 

  27. Marsh SG, Albert ED, Bodmer WF, Bontrop RE, Dupont B, Erlich HA, et al. Nomenclature for factors of the HLA system, 2010. Tissue Antigens. 2010;75(4):291–455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bertrams J, Kuwert E, Liedtke U. HL-A antigens and multiple sclerosis. Tissue Antigens. 1972;2:405–8.

    Article  CAS  PubMed  Google Scholar 

  29. Naito S, Namerow N, Mickey MR, Terasaki PI. Multiple sclerosis: association with HL-A3. Tissue Antigens. 1972;2:1–4.

    Article  CAS  PubMed  Google Scholar 

  30. Schmidt H, Williamson D, Ashley-Koch A. HLA-DR15 haplotype and multiple sclerosis: a HuGE review. Am J Epidemiol. 2007;165:1097–109.

    Article  PubMed  Google Scholar 

  31. The International Multiple Sclerosis Genetics Consortium & The Wellcome Trust Case Control Consortium 2. Genetic risk and a primary role for cell-mediate immune mechanisms in multiple sclerosis. Nature. 2011;476:214–9.

    Article  CAS  Google Scholar 

  32. Hollenbach JA, Oksenberg JR. The immunogenetics of multiple sclerosis: a comprehensive review. J Autoimmun. 2015;64:13–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Canto E, Oksenberg JR. Multiple sclerosis genetics. Mult Scler. 2018;24(1):75–9.

    Article  CAS  PubMed  Google Scholar 

  34. Hensiek AE, Sawcer SJ, Feakes R, Deans J, Mander A, Akesson E, et al. HLA-DR 15 is associated with female sex and younger age at diagnosis in multiple sclerosis. J Neurol Neurosurg Psychiatry. 2002;72:184–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Khare M, Mangalam A, Rodriguez M, David CS. HLA DR and DQ interaction in myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis in HLA class II transgenic mice. J Neuroimmunol. 2005;169:1–12.

    Article  CAS  PubMed  Google Scholar 

  36. Celius EG, Harbo HF, Egeland T, Vartdal F, Vandivik B, Spurkland A. Sex and age at diagnosis are correlated with the HLA-DR2, DQ6 haplotype in multiple sclerosis. J Neurol Sci. 2000;178:132–5.

    Article  CAS  PubMed  Google Scholar 

  37. Creary LE, Mallempati KC, Gangavarapu S, Caillier SJ, Oksenberg JR, Fernandez-Vina MA. Deconstruction of HLA-DRB1*04:01:01 and HLA-DRB1*15:01:01 class II haplotypes using next-generation sequencing in European-Americans with multiple sclerosis. Mult Scler. 2018;25(6):772–82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Marrosu MG, Murru MR, Costa G, Cucca F, Sotgiu S, Rosati G, et al. Multiple sclerosis in Sardinia is associated and in linkage disequilibrium with HLA-DR3 and –DR4 alleles. Am J Hum Genet. 1997;61:454–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Healy BC, Liguori M, Tran D, Chitnis T, Glanz B, Wolfish C, et al. HLA B*44: protective effects in MS susceptibility and MRI outcome measures. Neurology. 2010;75(7):634–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Link J, Kockum I, Lorentzen ÅR, Lie BA, Celius EG, Westerlind H, et al. Importance of human leukocyte antigen (HLA) class I and II alleles on the risk of multiple sclerosis. PLoS One. 2012;7(5):e36779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Van der Heide A, Verduijn W, Haasnoot GW, Drabbels JJ, Lammers GJ, Claas FH. HLA dosage effect in narcolepsy with cataplexy. Immunogenetics. 2015;67:1–6.

    Article  PubMed  CAS  Google Scholar 

  42. Noble JA, Erlich HA. Genetics of type 1 diabetes. Cold Spring Harb Perspect Med. 2012;2:a007732.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Gianfrancesco MA, Glymour MM, Walter S, Rhead B, Shao X, Shen L, et al. Causal effect of genetic variants associated with body mass index on multiple sclerosis susceptibility. Am J Epidemiol. 2017;185:162–71.

    PubMed  PubMed Central  Google Scholar 

  44. Kaklamani V, Yi N, Sadim M, Siziopikou K, Zhang K, Xu Y, et al. The role of the fat mass and obesity associated gene (FTO) in breast cancer risk. BMC Med Genet. 2011;12:52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jersild C, Svejgaard A, Fog T. HL-A antigens and multiple sclerosis. Lancet. 1972;1:1240–1.

    Article  CAS  PubMed  Google Scholar 

  46. Cocco E, Sardu C, Pieroni E, Valentini M, Murru R, Costa C, et al. HLA-DRB1-DQB1 haplotypes confer susceptibility and resistance to multiple sclerosis in Sardinia. PLoS One. 2012;7:e33972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. de la Concha EG, Cavanillas ML, Cenit MC, Urcelay E, Arroyo R, Fernandez O, et al. DRB1*03:01 haplotypes: differential contribution to multiple sclerosis risk and specific association with the presence of intrathecal IgM bands. PLoS One. 2012;7:e31018.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Kwon OJ, Karni A, Israel S, Brautbar C, Amar A, Meiner Z, et al. HLA class II susceptibility to multiple sclerosis among Ashkenazi and non-Ashkenazi Jews. Arch Neurol. 1999;56:555–60.

    Article  CAS  PubMed  Google Scholar 

  49. Karni A, Kohn Y, Safirman C, Abramsky O, Barcellos L, Oksenberg JR, et al. Evidence for the genetic role of human leukocyte antigens in low frequency DRB1*1501 multiple sclerosis patients in Israel. Mult Scler. 1000;5:410–5.

    Google Scholar 

  50. Caillier SJ, Briggs F, Cree BA, Baranzini SE, Fernandez-Vina M, Ramsay PP, et al. Uncoupling the roles of HLA-DRB1 and HLA-DRB5 genes in multiple sclerosis. J Immunol. 2008;181(8):5473–80.

    Article  CAS  PubMed  Google Scholar 

  51. Howson JM, Roy MS, Zeitels L, Stevens H, Todd JA. HLA class II gene associations in African American type 1 diabetes reveal a protective HLA-DRB1*03 haplotype. Diabet Med. 2013;30(6):710–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Dyment DA, Herrera BM, Cader MZ, Willer CJ, Lincoln MR, Sadovnick AD, et al. Complex interactions among MHC haplotypes in multiple sclerosis: susceptibility and resistance. Hum Mol Genet. 2005;14:2019–26.

    Article  CAS  PubMed  Google Scholar 

  53. Barcellos LF, Sawcer S, Ramsay PP, Baranzini SE, Thomson G, Briggs F, et al. Heterogeneity at the HLA-DRB1 locus and risk for multiple sclerosis. Hum Mol Genet. 2006;15:2813–24.

    Article  CAS  PubMed  Google Scholar 

  54. Silva AM, Bettencourt A, Pereira C, Santos E, Carvalho C, Mendonça D, Costa PP, Monteiro L, Martins B. Protective role of the HLA-A*02 allele in Portuguese patients with multiple sclerosis. Mult Scler. 2009;15(6):771–4.

    Article  CAS  PubMed  Google Scholar 

  55. Kollaee A, Ghaffarpor M, Ghlichnia HA, Ghaffari SH, Zamani M. The influence of the HLA-DRB1 and HLA-DQB1 allele heterogeneity on disease risk and severity in Iranian patients with multiple sclerosis. Int J Immunogenet. 2012;39(5):414–22.

    Article  CAS  PubMed  Google Scholar 

  56. Cierny D, Lehotsky J, Kantorova E, Sivak S, Javor J, Kurca E, et al. The HLA-DRB1 and HLA-DQB1 alleles are associated with multiple sclerosis disability progression in Slovak population. Neurol Res. 2018;40(7):607–14.

    Article  PubMed  CAS  Google Scholar 

  57. Laaksonen M, Pastinen T, Sjoroos M, Kuokkanen S, Ruutiainen J, Sumelahti ML, et al. HLA class II associated risk and protection against multiple sclerosis – a Finnish family study. J Neuroimmunol. 2002;122:140–5.

    Article  CAS  PubMed  Google Scholar 

  58. Kaimen-Maciel DR, Reiche EM, Borelli SD, Morimoto HK, Melo FC, Lopes J, et al. HLA-DRB1* allele-associated genetic susceptibility and protection against multiple sclerosis in Brazilian patients. Mol Med Rep. 2009;2:993–8.

    CAS  PubMed  Google Scholar 

  59. Ramagopalan SV, Morris AP, Dyment DA, Herrera BM, DeLuca GC, Lincoln MR, et al. The inheritance of resistance alleles in multiple sclerosis. PLoS Genet. 2007;3:1607–13.

    Article  CAS  PubMed  Google Scholar 

  60. Fisher RA. The correlations between relatives on the supposition of Mendelian inheritance. Trans R Soc Edinburgh. 2009;52:399–433.

    Article  Google Scholar 

  61. Sawcer S. The complex genetics of multiple sclerosis: pitfalls and prospects. Brain. 2008;131(Pt 12):3118–31.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Cotsapas C, Mitrovic M. Genome-wide association studies of multiple sclerosis. Clin Transl Immunol. 2018;7:e1018. https://doi.org/10.1002/cti2.1018.

    Article  Google Scholar 

  63. Pe’er I, Yelensky R, Altshuler D, Daly MJ. Estimation of the multiple testing burden for genomewide association studies of nearly all common variants. Genet Epidemiol. 2008;32:381–5.

    Article  PubMed  Google Scholar 

  64. International Multiple Sclerosis Genetics Consortium, Hafler DA, Compston A, Sawcer S, Lander ES, Daly MJ, et al. Risk alleles for multiple sclerosis identified by a genome wide study. N Engl J Med. 2007;357(9):851–62.

    Article  Google Scholar 

  65. Gregory SG, Schmidt S, Seth P, Oksenberg JR, Hart J, Prokop A, et al. Interleukin 7 receptor alpha chain (IL7R) shows allelic and functional association with multiple sclerosis. Nat Genet. 2007;39:1083–91.

    Article  CAS  PubMed  Google Scholar 

  66. Lundmark F, Duvefelt K, Iacobaeus E, Kockum I, Wallstrom E, Khademi M, et al. Variation in interleukin 7 receptor alpha chain (IL7R) influences risk of multiple sclerosis. Nat Genet. 2007;39:1108–13.

    Article  CAS  PubMed  Google Scholar 

  67. Weber F, Fontaine B, Cournu-Rebeix I, Kroner A, Knop M, Lutz S, et al. IL2RA and IL7RA genes confer susceptibility for multiple sclerosis in two independent European populations. Genes Immun. 2008;9:259–63.

    Article  CAS  PubMed  Google Scholar 

  68. Matesanz F, Caro-Maldonado A, Fedetz M, Fernandez O, Milne RL, Guerrero M, et al. IL2RA/CD25 polymorphisms contribute to multiple sclerosis susceptibility. J Neurol. 2007;254:682–4.

    Article  CAS  PubMed  Google Scholar 

  69. Noguchi M, Nakamura Y, Russell SM, Ziegler SF, Tsang M, Cao X, et al. Interleukin-2 receptor gamma chain: a functional component of the interleukin-7 receptor. Science. 1993;262(5141):1877–80.

    Article  CAS  PubMed  Google Scholar 

  70. Ye SK, Maki K, Kitamura T, Sunaga S, Akashi K, Domen J, et al. Induction of germline transcription in the TCRgamma locus by Stat5: implications for accessibility control by the IL-7 receptor. Immunity. 1999;11(2):213–23.

    Article  CAS  PubMed  Google Scholar 

  71. Stahl EA, Raychaudhuri S, Remmers EF, Xie G, Eyre S, Thomson BP, et al. Genome-wide association study meta-analysis identifies seven new rheumatoid arthritis risk loci. Nat Genet. 2010;42:508–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. International Multiple Sclerosis Genetics Consortium; Wellcome Trust Case Control Consortium 2, Sawcer S, Hellenthal G, Pirinen M, Spencer CC, Patsopoulos NA, Moutsianas L, et al. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature. 2011;476:214–9.

    Article  CAS  Google Scholar 

  73. Boyman O, Sprent J. The role of interleukin-2 during homeostasis and activation of the immune system. Nat Rev Immunol. 2012;12:180–90.

    Article  CAS  PubMed  Google Scholar 

  74. The International Multiple Sclerosis Genetics Consortium (IMSGC). Evidence for polygenic susceptibility to multiple sclerosis—the shape of things to come. Am J Hum Genet. 2010;86:621–5.

    Article  CAS  Google Scholar 

  75. International Multiple Sclerosis Genetics Consortium. Genome-wide association study of severity in multiple sclerosis. Genes Immun. 2011;12(8):615–25.

    Article  CAS  Google Scholar 

  76. International Multiple Sclerosis Genetics Consortium (IMSGC), Beecham AH, Patsopoulos NA, Xifara DK, Davis MF, Kemppinen A, Cotsapas C, et al. Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis. Nat Genet. 2013;45(11):1353–60.

    Article  CAS  Google Scholar 

  77. International Multiple Sclerosis Genetics Consortium, Patsopoulos NA, Baranzini SE, Santaniello A, Shoostari P, Cotsapas C, Wong G, et al. The multiple sclerosis genomic map: role of peripheral immune cells and resident microglia in susceptibility. Science. 2019;365(6460):eaav7188. https://doi.org/10.1126/science.aav7188.

    Article  CAS  PubMed Central  Google Scholar 

  78. Gianfrancesco MA, Stridh P, Shao X, Rhead B, Graves JS, Chitnis T, et al. Genetic risk factors for pediatric-onset multiple sclerosis. Mult Scler. 2018;24:1825–34.

    Article  CAS  PubMed  Google Scholar 

  79. Altshuler D, Daly MJ, Lander ES. Genetic mapping in human disease. Science. 2008;322:881–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Farh KK, Marson A, Zhu J, Kleinewietfeld M, Housley WJ, Beik S, Shoresh N, Whitton H, Ryan RJ, Shishkin AA, Hatan M, Carrasco-Alfonso MJ, Mayer D, Luckey CJ, Patsopoulos NA, De Jager PL, Kuchroo VK, Epstein CB, Daly MJ, Hafler DA, Bernstein BE. Genetic and epigenetic fine mapping of causal autoimmune disease variants. Nature. 2015;518(7539):337–43.

    Article  CAS  PubMed  Google Scholar 

  81. Dendrou CA, Fugger L, Friese MA. Immunopathology of multiple sclerosis. Nat Rev Immunol. 2015;15:545–58.

    Article  CAS  PubMed  Google Scholar 

  82. Raj T, Rothamel K, Mostafavi S, Ye C, Lee MN, Replogle JM, et al. Polarization of the effects of autoimmune and neurodegenerative risk alleles in leukocytes. Science. 2014;344(6183):519–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Diaz V. Encouraging participation of minorities in research studies. Ann Fam Med. 2012;10:372–3.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Kingwell E, Marriott JJ, Jetté N, Pringsheim T, Makhani N, Morrow SA, et al. Incidence and prevalence of multiple sclerosis in Europe: a systematic review. BMC Neurol. 2013;13:128.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Cree BA, Khan O, Bourdette D, Goodin DS, Cohen JA, Marrie RA, et al. Clinical characteristics of African Americans vs Caucasian Americans with multiple sclerosis. Neurology. 2004;63:2039–45.

    Article  CAS  PubMed  Google Scholar 

  86. Oksenberg JR, Barcellos LF, Cree BA, Baranzini SE, Bugawan TL, Khan O, et al. Mapping multiple sclerosis susceptibility to the HLA-DR locus in African Americans. Am J Hum Genet. 2004;74(1):160–7.

    Article  CAS  PubMed  Google Scholar 

  87. Cree BA, Reich DE, Khan O, De Jager PL, Nakashima I, Takahashi T, et al. Modification of multiple sclerosis phenotypes by African ancestry at HLA. Arch Neurol. 2009;66(2):226–33.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Johnson BA, Wang J, Taylor EM, Caillier SJ, Herbert J, Khan OA, et al. Multiple sclerosis susceptibility alleles in African Americans. Genes Immun. 2010;11:343–50. https://doi.org/10.1038/gene.2009.81.

    Article  CAS  PubMed  Google Scholar 

  89. Isobe N, Gourraud PA, Harbo HF, Caillier SJ, Santaniello A, Khankhanian P, et al. Genetic risk variants in African Americans with multiple sclerosis. Neurology. 2013;81(3):219–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Yoshimura S, Isobe N, Yonekawa T, Matsushita T, Masaki K, Sato S, et al. Genetic and infectious profiles of Japanese multiple sclerosis patients. PLoS One. 2012;7:e48592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Matsuoka T, Matsushita T, Osoegawa M, Kawano Y, Minohara M, Mihara F, et al. Association of the HLA-DRB1 alleles with characteristic MRi features of Asian multiple sclerosis. Mult Scler. 2008;14:1181–90.

    Article  CAS  PubMed  Google Scholar 

  92. Wang H, Pardeshi LA, Rong X, Li E, Wong KH, Peng Y, et al. Novel variants identified in multiple sclerosis patients from southern China. Front Neurol. 2018;9:582.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Barcellos LF, Oksenberg JR, Begovich AB, Martin ER, Schmidt S, Vittinghoff E, et al. HLA-DR2 dose effect on susceptibility to multiple sclerosis and influence on disease course. Am J Hum Genet. 2003;72:710–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Vader W, Stepniak D, Kooy Y, Mearin L, Thompson A, van Rood JJ, et al. The HLA-DQ2 gene dose effect in celiac disease is directly related to the magnitude and breadth of gluten-specific T cell responses. Proc Natl Acad Sci U S A. 2003;100:12390–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Baranzini SE. Revealing the genetic basis of multiple sclerosis: are we there yet? Curr Opin Genet Dev. 2011;21:317–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Sirota M, Schaub MA, Batzoglou S, Robinson WH, Butte AJ. Autoimmune disease classification by inverse association with SNP alleles. PLoS Genet. 2009;5:e1000792.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Masterman T, Ligers A, Olsson T, Andersson M, Olerup O, Hillert J. HLA-DR15 is associated with lower age at onset in multiple sclerosis. Ann Neurol. 2000;48:211–9.

    Article  CAS  PubMed  Google Scholar 

  98. Smestad C, Brynedal B, Jonasdottir G, Lorentzen AR, Masterman T, Akesson E, et al. The impact of HLA-A and -DRB1 on age at onset, disease course and severity in Scandinavian multiple sclerosis patients. Eur J Neurol. 2007;14:835–40.

    Article  CAS  PubMed  Google Scholar 

  99. Werneck LC, Lorenzoni PJ, Kay CSK, Scola RH. Multiple sclerosis: disease modifying therapy and the human leukocyte antigen. Arq Neuropsiquiatr. 2018;76(10):697–704.

    Article  PubMed  Google Scholar 

  100. Okuda DT, Srinivasan R, Oksenberg JR, Goodin DS, Baranzini SE, Beheshtian A, et al. Genotype-phenotype correlations in multiple sclerosis: HLA genes influence disease severity inferred by 1HMR spectroscopy and MRI measures. Brain. 2009;132(Pt 1):250–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Qiu W, Raven S, James I, Luo Y, Wu J, Castley A, et al. Spinal cord involvement in multiple sclerosis: a correlative MRI and high-resolution HLA-DRB1 genotyping study. J Neurol Sci. 2011;300:114–9.

    Article  CAS  PubMed  Google Scholar 

  102. Nakamura Y, Matsushita T, Sato S, Niino M, Fukazawa T, Yoshimura S, et al. Japan Multiple Sclerosis Genetics Consortium. Latitude and HLA-DRB1*04:05 independently influence disease severity in Japanese multiple sclerosis: a cross-sectional study. J Neuroinflammation. 2016;13(1):239.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Mokry LE, Ross S, Ahmad OS, Forgetta V, Smith GD, Goltzman D, Leong A, Greenwood CM, Thanassoulis G, Richards JB. Vitamin D and risk of multiple sclerosis: a Mendelian randomization study. PLoS Med. 2015;12:e1001866.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Baranzini SE, Wang J, Gibson RA, Galwey N, Naegelin Y, Barkhof F, et al. Genome-wide association analysis of susceptibility and clinical phenotype in multiple sclerosis. Hum Mol Genet. 2009;18(4):767–78.

    Article  CAS  PubMed  Google Scholar 

  105. Zou ZY, Zhou ZR, Che CH, Liu CY, He RL, Huang HP. Genetic epidemiology of amyotrophic lateral sclerosis: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry. 2017;88:540–9.

    Article  PubMed  Google Scholar 

  106. Harbo HF, Isobe N, Berg-Hansen P, Bos SD, Caillier SJ, Gustavsen MW, et al. Oligoclonal bands and age at onset correlate with genetic risk score in multiple sclerosis. Mult Scler. 2014;20(6):660–8.

    Article  PubMed  Google Scholar 

  107. Graves JS, Barcellos LF, Shao X, Noble J, Mowry EM, Quach H, et al. Genetic predictors of relapse rate in pediatric MS. Mult Scler. 2016;22:1528–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Graves JS, Barcellos LF, Simpson S, Belman A, Lin R, Taylor BV, et al. The multiple sclerosis risk allele within the AHI1 gene is associated with relapses in children and adults. Mult Scler Relat Disord. 2018;19:161–5.

    Article  PubMed  Google Scholar 

  109. Zhou Y, Simpson S, Charlesworth JC, Van Der Mei I, Lucas RM, Ponsonby AL, et al. Variation within MBP gene predicts disease course in multiple sclerosis. Brain Behav. 2017;7:e00670. https://doi.org/10.1002/brb3.670.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Gil-Varea E, Urcelay E, Vilarino-Guell C, Costa C, Midaglia L, Matesanz F, et al. Exome sequencing study in patients with multiple sclerosis reveals variants associated with disease course. J Neuroinflammation. 2018;15(1):265.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Munger KL, Levin LI, Hollis BW, Howard NS, Ascherio A. Serum 25-hydroxyvitamin D levels and risk of multiple sclerosis. JAMA. 2006;296:2832–8.

    Article  CAS  PubMed  Google Scholar 

  112. Kragt JJ, van Amerongen BM, Killestein J, Dijkstra C, Uitdehaag B, Polman C, et al. Higher levels of 25-hydroxyvitamin D are associated with a lower incidence of multiple sclerosis only in women. Mult Scler. 2009;15(1):9–15.

    Article  CAS  PubMed  Google Scholar 

  113. Smolders J, Menheere P, Kessels A, Damoiseaux J, Hupperts R. Association of vitamin D metabolite levels with relapse rate and disability in multiple sclerosis. Mult Scler. 2008;14:1220–4.

    Article  CAS  PubMed  Google Scholar 

  114. Hart PH, Lucas RM, Booth DR, Carroll WM, Nolan D, Cole JM, et al. Narrowband UVB phototherapy for clinically isolated syndrome: a trial to deliver the benefits of vitamin D and other UVB-induced molecules. Front Immunol. 2017;8:3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Gianfrancesco MA, Stridh P, Rhead B. Evidence for a causal relationship between low vitamin D, high BMI, and pediatric-onset MS. Neurology. 2017;88:1623–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Graves JS, Barcellos LF, Krupp L, Belman A, Shao X, Quach H, et al. Vitamin D genes influence MS relapses in children. Mult Scler. 2019;26(8):894–901.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  117. Munger KL, Chitnis T, Ascherio A. Body size and risk of MS in two cohorts of US women. Neurology. 2009;73:1543–50.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Langer-Gould A, Brara SM, Beaber BE. Childhood obesity and risk of pediatric multiple sclerosis and clinically isolated syndrome. Neurology. 2013;80:548–52.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Munger KL, Bentzen J, Laursen B. Childhood body mass index and multiple sclerosis risk: a long-term cohort study. Mult Scler. 2013;19:1323–9.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Mokry LE, Ross S, Timpson NJ, Sawcer S, Davey Smith G, Richards JB. Obesity and multiple sclerosis: a mendelian randomization study. PLoS Med. 2016;13:e1002053.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Lewis SJ, Murad A, Chen L, Davey Smith G, Donovan J, Palmer T, et al. Associations between an obesity related genetic variant (FTO rs9939609) and prostate cancer risk. PLoS One. 2010;5(10):e13485.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Keller L, Xu W, Wang HX, Winblad B, Fratiglioni L, Graff C. The obesity related gene, FTO, interacts with APOE, and is associated with Alzheimer’s disease risk: a prospective cohort study. J Alzheimers Dis. 2011;23(3):461–9.

    Article  CAS  PubMed  Google Scholar 

  123. Bressler J, Fornage M, Demerath EW, Knopman DS, Monda KL, North KE, et al. Fat mass and obesity gene and cognitive decline: the Atherosclerosis Risk in Communities Study. Neurology. 2013;80(1):92–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Vimaleswaran KS, Berry DJ. Lu C. Causal relationship between obesity and vitamin D status: Bi-directional Mendelian randomization analysis of multiple cohorts. PLoS Med. 2013;10:e1001383.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Pakpoor J, Pakpoor J. Childhood obesity and risk of pediatric multiple sclerosis and clinically isolated syndrome. Neurology. 2013;81:1366.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer S. Graves .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Miner, A.E., Dastgheyb, N., Palomino, M., Graves, J.S. (2021). The Genetics of Multiple Sclerosis. In: Piquet, A.L., Alvarez, E. (eds) Neuroimmunology. Springer, Cham. https://doi.org/10.1007/978-3-030-61883-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61883-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61882-7

  • Online ISBN: 978-3-030-61883-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics