Skip to main content

Disaster Resilience and Computational Methods for Urban Infrastructures

  • Chapter
  • First Online:
Handbook of Disaster Risk Reduction for Resilience

Abstract

Urban infrastructures are mostly interdependent in various ways. A variety of qualitative explanations is presented in the literature to analyze and address resiliency and vulnerability. Unfortunately, most of the explanations do not provide an objective resilience index computation. This chapter attempts to develop resilience indices and computational methods for urban infrastructures in order to lower disasters risk subjected to urban infrastructures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ayyub, B. M. (2015). Practical resilience metrics for planning, design, and decision making. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 1(3), 04015008.

    Article  Google Scholar 

  • Balcik, B., Beamon, B. M., & Smilowitz, K. (2008). Last mile distribution in humanitarian relief. Journal of Intelligent Transportation Systems, 12(2), 51–63.

    Article  Google Scholar 

  • Barbarosoglu, G., Özdamar, L., & Cevik, A. (2002). An interactive approach for hierarchical analysis of helicopter logistics in disaster relief operations. European Journal of Operational Research, 140(1), 118–133.

    Article  Google Scholar 

  • Barkley, C. (2009). Lifelines: Upgrading infrastructure to enhance San Francisco’s earthquake resilience, SPUR (San Francisco Bay Area planning and urban research association), USA.

    Google Scholar 

  • Beamon, B. M. (2004, November). Humanitarian relief chains: Issues and challenges. In Proceedings of the 34th international conference on computers and industrial engineering (Vol. 34, pp. 77–82). Seattle: University of Washington.

    Google Scholar 

  • Boughton, G., Henderson, D., Ginger, J., Holmes, J., Walker, G., Leitch, C., Somerville, L., Frye, U., Jayasinghe, N., & Kim, P., 2011. Tropical cyclone Yasi: Structural damage to buildings, Cyclone testing station, James Cook University, report TR57, Australia.

    Google Scholar 

  • Bruneau, M., Chang, S. E., Eguchi, R. T., Lee, G. C., O’Rourke, T. D., Reinhorn, A. M., Shinozuka, M., Tierney, K., Wallace, W. A., & Von Winterfeldt, D. (2003). A framework to quantitatively assess and enhance the seismic resilience of communities. Earthquake Spectra, 19(4), 733–752.

    Article  Google Scholar 

  • Campbell, A. M., Vandenbussche, D., & Hermann, W. (2008). Routing for relief efforts. Transportation Science, 42(2), 127–145.

    Article  Google Scholar 

  • Cao, C. (2015). Cost effective and survivable cabling design under major disasters. Ph.D. Thesis, City University of Hong Kong, Hong Kong.

    Google Scholar 

  • Cao, C., Zukerman, M., Wu, W., Manton, J. H., & Moran, B. (2013). Survivable topology design of submarine networks. Journal of Lightwave Technology, 31(5), 715–730.

    Article  Google Scholar 

  • Cao, C., Wang, Z., Zukerman, M., Manton, J. H., Bensoussan, A., & Wang, Y. (2016). Optimal cable laying across an earthquake fault line considering elliptical failures. IEEE Transactions on Reliability, 65(3), 1536–1550.

    Article  Google Scholar 

  • Carter, L., Burnett, D., Drew, S., Marle, G., Hagadorn, L., Bartlett-McNeil, D., & Irvine, N. (2009). Submarine cables and the oceans–connecting the world. UNEP-WCMC Biodiversity Series No. 31. Cambridge: UNEP-WCMC, UK.

    Google Scholar 

  • Chang, S. E., Taylor, J. E., Elwood, K. J., Seville, E., Brunsdon, D., & Gartner, M. (2014). Urban disaster recovery in Christchurch: The central business district cordon and other critical decisions. Earthquake Spectra, 30(1), 513–532.

    Article  Google Scholar 

  • Coffrin, C., Van Hentenryck, P., & Bent, R. (2011, May). Spatial and objective decompositions for very large scaps. In International conference on AI and OR techniques in Constriant programming for combinatorial optimization problems (pp. 59–75). Berlin, Heidelberg: Springer.

    Google Scholar 

  • Corfu (Collaborative Research on Flood Resilience in Urban areas). (2015) See www.corfu7.eu. Accessed 22 Apr 2015.

  • CRED (Centre for Research on the Epidemiology of Disasters). (2015). The human cost of natural disasters: A global perspective. Belgium: (IRSS), Université Catholique de Louvain.

    Google Scholar 

  • Cutter, S. L., Barnes, L., Berry, M., Burton, C., Evans, E., Tate, E., & Webb, J. (2008). A place-based model for understanding community resilience to natural disasters. Global Environmental Change, 18(4), 598–606.

    Article  Google Scholar 

  • Davies Consulting. (2012, February 27). Final report: Connecticut light and power’s emergency preparedness and response to Storm Irene and the October Nor’easter. Retrieved July 1, 2015.

    Google Scholar 

  • Duran, S., Gutierrez, M. A., & Keskinocak, P. (2011). Pre-positioning of emergency items for CARE, international. Interfaces, 41(3), 223–237.

    Article  Google Scholar 

  • Entergy New Orleans, Inc. and Entergy Louisiana, LLC. (2013, February 6). Hurricane Isaac report submitted pursuant to council of the city of New Orleans resolution nos. R-12-332 and R-12-426.

    Google Scholar 

  • Erez, N., & Bowman, A. L. (2006). Holistic approach for assessing the vulnerability of buried pipelines to earthquake loads. Natural Hazards Review, 7(1), 12–18.

    Article  Google Scholar 

  • Escarameia, M., & Stone, K. (2013). Technologies for flood protection of the built environment – Guidance based on findings from the EU-funded project FloodProBE. Floodprobe Project Floodprobe, Netherlands.

    Google Scholar 

  • Estekanchi, H. E. (2014). Endurance time method website. https://sites.google.com/site/etmethod/.

  • Estekanchi, H. E., Vafaei, A., & Sadeghi, A. M. (2004). Endurance time method for seismic analysis and design of structures. Scientia Iranica, 11(4), 361–370.

    Google Scholar 

  • Estekanchi, H. E., Vafai, A., & Basim, M. C. (2016). Design and assessment of seismic resilient structures by the endurance time method. Scientia Iranica. Transaction A, Civil Engineering, 23(4), 1648.

    Google Scholar 

  • Flax, L. K., Jackson, R. W., & Stein, D. N. (2002). Community vulnerability assessment tool methodology. Natural Hazards Review, 3(4), 163–176.

    Article  Google Scholar 

  • FloodProBE. (2015). See www.floodprobe.eu. Accessed 22 Apr 2015.

  • Floodsite. (2015). See www.floodsite.net. Accessed 22 Apr 2015.

  • Fothergill, A. (2000). Knowledge transfer between researchers and practitioners. Natural Hazards Review, 1(2), 91–98.

    Article  Google Scholar 

  • Fritz Institute. (2008). Fritz Institute Website. http://www.fritzinstitute.org.

  • Gillespie, D. F., Robards, K. J., & Cho, S. (2004). Designing safe systems: Using system dynamics to understand complexity. Natural Hazards Review, 5(2), 82–88.

    Article  Google Scholar 

  • Ginger, J. D., Henderson, D. J., Leitch, C. J., & Boughton, G. N. (2007). Tropical cyclone Larry: Estimation of wind field and assessment of building damage. Australian Journal of Structural Engineering, 7(3), 209–224.

    Article  Google Scholar 

  • Guha-Sapir, D., Below, R., & Hoyois, P. (2016). The CRED/OFDA international disaster database. Nature, 2, 250–261.

    Google Scholar 

  • Gunnec, D., & Salman, F. (2007, April). A two-stage multi-criteria stochastic programming model for location of emergency response and distribution centers. In International network optimization conference, Spa, Belgium.

    Google Scholar 

  • Hecker, E. J., Irwin, W., Cottrell, D., & Bruzewicz, A. (2000). Strategies for improving response and recovery in the future. Natural Hazards Review, 1(3), 161–170.

    Article  Google Scholar 

  • Holand, I. S. (2015). Lifeline issue in social vulnerability indexing: A review of indicators and discussion of indicator application. Natural Hazards Review, 16(3), 04014026.

    Article  Google Scholar 

  • Holling, C. S. (1973). Resilience and stability of ecological systems. Annual Review of Ecology and Systematics, 4(1), 1–23.

    Article  Google Scholar 

  • Knabb, R. D., Rhome, J. R., & Brown, D. P. (2005, August 23–30). Tropical cyclone report: Hurricane Katrina. National Hurricane Center, USA.

    Google Scholar 

  • Liel, A. B., Corotis, R. B., Camata, G., Sutton, J., Holtzman, R., & Spacone, E. (2013). Perceptions of decision-making roles and priorities that affect rebuilding after disaster: The example of L’Aquila, Italy. Earthquake Spectra, 29(3), 843–868.

    Article  Google Scholar 

  • Little, R. G., Loggins, R. A., & Wallace, W. A. (2015). Building the right tool for the job: Value of stakeholder involvement when developing decision-support technologies for emergency management. Natural Hazards Review, 16(4), 05015001.

    Article  Google Scholar 

  • Luettich, R. A., Jr., Wright, L. D., Nichols, C. R., Baltes, R., Friedrichs, M. A., Kurapov, A., van der Westhuysen, A., Fennel, K., & Howlett, E. (2017). A test bed for coastal and ocean modeling. Eos, 98.

    Google Scholar 

  • Mi2g. (2005). More than 1% GDP drop estimated per week of Internet blackout. http://www.mi2g.com/cgi/mi2g/press/220705.php. Accessed May 2017.

  • Mirzaee, A., Estekanchi, H. E., & Vafai, A. (2012). Improved methodology for endurance time analysis: From time to seismic hazard return period. Scientia Iranica, 19(5), 1180–1187.

    Article  Google Scholar 

  • Nastev, M., Nollet, M. J., Abo El Ezz, A., Smirnoff, A., Ploeger, S. K., McGrath, H., Sawada, M., Stefanakis, E., & Parent, M. (2017). Methods and tools for natural hazard risk analysis in Eastern Canada: Using knowledge to understand vulnerability and implement mitigation measures. Natural Hazards Review, 18(1), B4015002.

    Article  Google Scholar 

  • National Disaster Management Office. (2016). Tropical cyclone Winston situation report 95, no. 95, Fiji: National Disaster Management Office, USA.

    Google Scholar 

  • OSSPAC. (2013, February). The Oregon resilience plan, Salem: Oregon Seismic Safety Policy Advisory Committee [Online]. Available: https://www.oregon.gov/oem/Documents/Oregon_Resilience_Plan_Final.pdf. Accessed 19 June 2018.

  • OSU. (2014). Center for resilience at The Ohio State University, Columbus. http://resilience.osu.edu/CFR-site/concepts.htm.

  • Perry, S., Jones, L., & Cox, D. (2011). Developing a scenario for widespread use: Best practices, lessons learned. Earthquake Spectra, 27(2), 263–272.

    Article  Google Scholar 

  • Prevatt, D. O. (1994). Improving the cyclone-resistance of traditional Caribbean house construction through rational structural design criteria. Journal of Wind Engineering and Industrial Aerodynamics, 52, 305–319.

    Article  Google Scholar 

  • Qiu, W. (2011, March 19). Submarine cables cut after Taiwan earthquake in Dec 2006. Submarine Cable Networks.

    Google Scholar 

  • Re, M., 2012. Natural catastrophes 2015. Munich Re NatCatSERVICE. Available online at www. munichre.com/en/media_reiations/press_releases/2012/2012_01_04_press_release.aspx (last accessed 16 April 2012).

    Google Scholar 

  • Schuster, R.L., Egred, J., & National Research Council (1991). The March 5, 1987, Ecuador earthquakes: Mass wasting and socioeconomic effects. National Academies Press, USA.

    Google Scholar 

  • Simonovic, S. P., & Peck, A. (2013). Dynamic resilience to climate change caused natural disasters in coastal megacities quantification framework. British Journal of Environment and Climate Change, 3(3), 378–401.

    Article  Google Scholar 

  • South California Edison. (2011, December). Final report Southern California Edison’s response to the November 30, 2011 windstorm. South California Edison, USA.

    Google Scholar 

  • South California Edisson. (2012). December 2011 outage report: Restoration and communications challenges and root cause evaluation, USA.

    Google Scholar 

  • Thompson, P. R., Merrifield, M. A., Wells, J. R., & Chang, C. M. (2014). Wind-driven coastal sea level variability in the Northeast Pacific. Journal of Climate, 27(12), 4733–4751.

    Article  Google Scholar 

  • Thompson, P. R., Piecuch, C. G., Merrifield, M. A., McCreary, J. P., & Firing, E. (2016). Forcing of recent decadal variability in the Equatorial and North Indian Ocean. Journal of Geophysical Research, Oceans, 121(9), 6762–6778.

    Article  Google Scholar 

  • United States. Executive Office of the President, Etats-Unis. Assistant to the President for homeland security, counterterrorism, Superintendent of Documents, President of the United States Staff, United States. Assistant to the President for Homeland Security, Counterterrorism and Superintendent of Documents Staff, 2006. The federal response to Hurricane Katrina: Lessons learned. Government Printing Office.

    Google Scholar 

  • U.S. Department of Commerce, Service Assessment. (2012). Hurricane Irene, August 21–30, 2011, USA.

    Google Scholar 

  • Uddin, N., & Engi, D. (2002). Disaster management system for southwestern Indiana. Natural Hazards Review, 3(1), 19–30.

    Article  Google Scholar 

  • Unal, M., & Warn, G. P. (2017). A set-based approach to support decision-making on the restoration of infrastructure networks. Earthquake Spectra, 33(2), 781–801.

    Article  Google Scholar 

  • UNISDR – United Nations Office for Disaster Risk Reduction. (2015a). Making development sustainable: The future of disaster risk management. Global assessment report on disaster risk reduction, Geneva, Switzerland.

    Google Scholar 

  • UNISDR – United Nations Office for Disaster Risk Reduction. (2015b). Sendai framework for disaster risk reduction 2015–2030, Geneva, Switzerland.

    Google Scholar 

  • United States. Executive Office of the President, Etats-Unis. Assistant to the President for homeland security, counterterrorism, Superintendent of Documents, President of the United States Staff, United States. Assistant to the President for Homeland Security, Counterterrorism and Superintendent of Documents Staff, 2006. The federal response to Hurricane Katrina: Lessons learned. Government Printing Office..

    Google Scholar 

  • Van Hentenryck, P. (2013, August 3–9). Computational disaster management. In Twenty-third international joint conference on artificial intelligence, Beijing, China,

    Google Scholar 

  • Van Hentenryck, P., Bent, R., & Coffrin, C. (2010, June). Strategic planning for disaster recovery with stochastic last mile distribution. In International conference on integration of artificial intelligence (AI) and operations research (OR) techniques in constraint programming (pp. 318–333). Berlin/Heidelberg: Springer.

    Google Scholar 

  • Wald, D., Lin, K. W., Porter, K., & Turner, L. (2008). ShakeCast: Automating and improving the use of ShakeMap for post-earthquake decision-making and response. Earthquake Spectra, 24(2), 533–553.

    Article  Google Scholar 

  • Walker, B., Holling, C. S., Carpenter, S. R., & Kinzig, A. (2004). Resilience, adaptability and transformability in social–ecological systems. Ecology and Society, 9(2), 5.

    Article  Google Scholar 

  • WASSC. (2010, September 17). Resilient Washington state workshop final summary report. Olympia: State of Washington Emergency Management Council Seismic Safety Committee. September 2010 [Online]. Available: www.mil.wa.gov/uploads/pdf/seismic-safety-committee/RWSworkshop report I.pdf. Accessed 19 June 2018.

  • Wassenhove, L. N. (2006). Humanitarian aid logistics: Supply chain management in high gear. Journal of the Operational Research Society, 57(5), 475–489.

    Article  Google Scholar 

  • Westport Fire Department Westport Emergency Management. (2012). After action report: Tropical storm irene, preparation, response and recovery. August 27–September 5, 2011, USA.

    Google Scholar 

  • Wright, L. D., & Nichols, C. R. e. (2019). Tomorrow’s coasts: Complex and impermanent. Cham: Springer International Publishing.

    Book  Google Scholar 

  • Zevenbergen, C., Kolaka, K., van Herk, S., Escarameia, M., Gersonius, B., Serre, D., Walliman, N., de Bruijn, K. M., & de Graaf, R. (2013, September 5–7). Assessing quick-wins to protect critical urban infrastructure from floods: Case study (three urban communities) Bangkok, Thailand. In International conference on flood resilience (ICFR): Experiences in Asia and Europe. CORFU, Exeter, UK.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Eslamian, S., Maleki, M. (2021). Disaster Resilience and Computational Methods for Urban Infrastructures. In: Eslamian, S., Eslamian, F. (eds) Handbook of Disaster Risk Reduction for Resilience. Springer, Cham. https://doi.org/10.1007/978-3-030-61278-8_13

Download citation

Publish with us

Policies and ethics