Skip to main content

Fungi and Their Potential as Biofertilizers

  • Chapter
  • First Online:
Microbiota and Biofertilizers, Vol 2

Abstract

We have witnessed the doubling of human population during the past four decades along with the continuous replication of food production as well. In this scenario of increasing demand for the supply of food, plant nutrition has played a very important role. Man-made fertilizers have made it possible that there has been an increase in crop production. Because of their ability to control plant diseases and to increase the crop production in an environmentally friendly manner, fungal biofertilizers have been recently promoted for various agricultural uses. Several fungal biofertilizers in this regard have been used for commercial production, and it has also been noted that they play a very important role in promoting plant growth and productivity and also in improving soil fertility. Fungal biofertilizers include plant growth-stimulating fungi, compost producing enzymatic fungi, P-solubilizing fungi, and K-solubilizing fungi. Phosphate-solubilizing fungi help in the harnessing of phosphate that is available in the soil-plant systems and then making it available to the plants. They help in the solubilization and mineralization of phosphate that is present in the organic and inorganic form in the soil and in this process help in the improving growth and yield of a wide variety of crops. It has been seen that the use of phosphate-solubilizing fungi as common phosphate fertilizers has been a promising strategy that has helped to improve global demands of better agricultural productivity, reduction of soil fertility, water pollution, as well as accumulation of toxic wastes. It has helped in providing an environmentally suitable agro-technique that has helped in providing enhanced agricultural sustainability. This book chapter will mainly focus on the fungi that have the potential to be used as biofertilizers besides looking at their merits and demerits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adholeya A, Tiwari P, Singh R (2005) Large scale inoculum production of arbuscular mycorrhizal fungi on root organs and inoculation strategies. In: Declerck S, Strullu D-G, Fortin A (eds) Soil biology, in vitro culture of mycorrhizae, vol 4. Springer-Verlag, Berlin Heidelberg, pp 315–338

    Chapter  Google Scholar 

  • Agamy R, Hashem M, Alamri S (2013) Effect of soil amendment with yeasts as bio-fertilizers on the growth and productivity of sugar beet. Afr J Agric Res 8:46–56

    Google Scholar 

  • Agrios GN (2005) Plant pathology, 5th edn. Academic Press, San Diego, p 922

    Google Scholar 

  • Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163:173–181

    Article  CAS  PubMed  Google Scholar 

  • Akintokun AK, Akande GA, Akintokun PO, Popoola TOS, Babalola AO (2007) Solubilization on insoluble phosphate by organic acid-producing fungi isolated from Nigerian soil. Int J Soil Sci 2:301–307

    Article  CAS  Google Scholar 

  • Alabouvette C, Olivain C, Steinberg C (2006) Biological control of plant diseases: the European situation. Eur J Plant Pathol 114:329–341

    Article  Google Scholar 

  • Anderson CI, Cairney WGJ (2004) Diversity and ecology of soil fungal communities: increased understanding through the application of molecular techniques. Environ Microbiol 6:69–779

    Article  CAS  Google Scholar 

  • Bagyaraj DJ, Mehrotra VS, Suresh CK (2002) Vesicular arbuscular mycorrhizal biofertilizer for tropical forest plants. In: Kannaiyan S (ed) Biotechnology of biofertilizers. Kluwer Academic Publishers, Boston, pp 299–311

    Google Scholar 

  • Barroso CB, Pereira GT, Nahas E (2006) Solubilization of CAHPO4 and ALPO4 by Aspergillus niger in culture media with different carbon and nitrogen sources. Braz J Microbiol 37:434–438

    Article  CAS  Google Scholar 

  • Benítez T, Rincón MA, Limón MC, Codón CA (2004) Biocontrol mechanisms of Trichoderma strains. Int Microbiol 7:249–260

    PubMed  Google Scholar 

  • Bhat RA, Shafiq-ur-Rehman MM, Dervash MA, Mushtaq N, Bhat JIA, Dar GH (2017a) Current status of nutrient load in Dal Lake of Kashmir Himalaya. J Pharmacogn Phytochem 6(6):165–169

    CAS  Google Scholar 

  • Bhat RA, Dervash MA, Mehmood MA, Bhat MS, Rashid A, Bhat JIA, Singh DV, Lone R (2017b) Mycorrhizae: a sustainable industry for plant and soil environment. In: Varma A et al (eds) Mycorrhiza-nutrient uptake, biocontrol, ecorestoration. Springer International Publishing, Cham, pp 473–502

    Chapter  Google Scholar 

  • Bhat RA, Beigh BA, Mir SA, Dar SA, Dervash MA, Rashid A, Lone R (2018a) Biopesticide techniques to remediate pesticides in polluted ecosystems. In: Wani KA (ed) Handbook of research on the adverse effects of pesticide pollution in aquatic ecosystems. IGI Global, Mamta, pp 387–407

    Google Scholar 

  • Bhat RA, Dervash MA, Qadri H, Mushtaq N, Dar GH (2018b) Macrophytes, the natural cleaners of toxic heavy metal (THM) pollution from aquatic ecosystems. In: Environmental contamination and remediation. Cambridge Scholars Publishing, Cambridge, pp 189–209

    Google Scholar 

  • Bhatti AA, Haq S, Bhat RA (2017) Actinomycetes benefaction role in soil and plant health. Microb Pathog 111:458–467

    Article  CAS  PubMed  Google Scholar 

  • Burton EM, Knight SD (2005) Survival of Penicillium bilaiae inoculated on canola seed treated with Vitavax RS and Extender. Biol Fertil Soils 42:54–59

    Article  CAS  Google Scholar 

  • Calhelha RC, Andrade JV, Ferreira IC, Estevinho LM (2006) Toxicity effects of fungicide residues on the wine-producing process. Food Microbiol 23:393–398

    Article  CAS  PubMed  Google Scholar 

  • Chandanie WA, Kubota M, Hyakumachi M (2006) Interactions between plant growth promoting fungi and arbuscular mycorrhizal fungus Glomus mosseae and induction of systemic resistance to anthracnose disease in cucumber. Plant Soil 286:209–217

    Article  CAS  Google Scholar 

  • Chang YC, Baker R, Kleifeld O, Chet I (1986) Increased growth of plants in the presence of the biological control agent T. harzianum. Plant Dis 70:145–148

    Article  Google Scholar 

  • Chen JH (2006) The combined use of chemical and organic fertilizers and/or biofertilizer for crop growth and soil fertility. International workshop on sustained management of the soil-rhizosphere system for efficient crop production and fertilizer use. 16–20 October 2006, Land Development Department, Bangkok 10900 Thailand, pp 1–11

    Google Scholar 

  • Dar S, Bhat RA (2020) Aquatic pollution stress and role of biofilms as environment cleanup technology. In: Qadri H, Bhat RA, Dar GH, Mehmood MA (eds) Freshwater pollution dynamics and remediation. Springer Nature, Singapore, pp 293–318

    Chapter  Google Scholar 

  • Dar GH, Bandh SA, Kamili AN, Nazir R, Bhat RA (2013) Comparative analysis of different types of bacterial colonies from the soils of Yusmarg forest, Kashmir valley India. Ecol Balkanica 5(1):31–35

    Google Scholar 

  • Dar GH, Kamili AN, Chishti MZ, Dar SA, Tantry TA, Ahmad F (2016) Characterization of Aeromonas sobria isolated from fish Rohu (Labeo rohita) collected from polluted pond. J Bacteriol Parasitol 7(3):1–5. https://doi.org/10.4172/2155-9597.1000273

    Article  CAS  Google Scholar 

  • Dar GH, Bhat RA, Kamili AN, Chishti MZ, Qadri H, Dar R, Mehmood MA (2020) Correlation between pollution trends of fresh water bodies and bacterial disease of fish fauna. In: Qadri H, Bhat RA, Dar GH, Mehmood MA (eds) Freshwater pollution dynamics and remediation. Springer Nature, Singapore, pp 51–68

    Chapter  Google Scholar 

  • Das A, Prasad R, Srivastava A, Giang HP, Bhatnagar K, Varma A (2007) Fungal siderophores: structure, functions and regulation. In: Varma A, Chincholkar SB (eds) Soil biology volume 12 microbial siderophores. Springer-Verlag, Berlin Heidelberg, pp 1–42

    Google Scholar 

  • de la Bastide PY, Kropp BR, Piché Y (1994) Spatial and temporal persistence of discrete genotypes of the ectomycorrhizal fungus Laccaria bicolor (Maire) Orton. New Phytol 127:547–556

    Article  Google Scholar 

  • Dervash MA, Bhat RA, Shafiq S, Singh DV, Mushtaq N (2020) Biotechnological intervention as an aquatic clean up tool. In: Qadri H, Bhat RA, Mehmood MA, Dar GH (eds) Freshwater pollution dynamics and remediation. Springer Nature, Singapore, pp 183–196

    Chapter  Google Scholar 

  • Douds DD, Gadkar JV, Adholeya A (2000) Mass production of VAM fungus biofertilizer. In: Mukerji KG, Singh J, Chamola BP (eds) Mycorrhizal biology. Kluwer Academic/Plenum Publishers, New York, pp 197–214

    Chapter  Google Scholar 

  • Ecobichon DJ (2001) Pesticide use in developing countries. Toxicology 160:27–33

    Article  CAS  PubMed  Google Scholar 

  • El-Azouni IM (2008) Effect of phosphate solubilising fungi on growth and nutrient uptake of soybean (Glycine Max L.) plants. J Appl Sci Res 4:592–598

    CAS  Google Scholar 

  • El-Tarabily KA (2004) Suppression of Rhizoctonia solani diseases of sugar beet by antagonistic and plant growth-promoting yeasts. J Appl Microbiol 96:69–75

    Article  CAS  PubMed  Google Scholar 

  • Emmert EAB, Handelsman J (1999) Biocontrol of plant disease: a (Gram-) positive perspective. Microbiol Lett 171:1–9

    Article  CAS  Google Scholar 

  • Ene M, Mioara A (2008) Microscopical examination of plant reaction in case of infection with Trichoderma and Mycorrhizal fungi. Rom Biotechnol Lett 13:13–19

    Google Scholar 

  • Frank AB (1885) Ueber den gegenwärtigen Stand der Trüffelfrage und die damit zusammenhängende Ernährung gewisser Bäume durch Wurzelpilze. Gart Ztg 4:423–426

    Google Scholar 

  • Fravel RD (2005) Commercialization and implementation of biocontrol. Annu Rev Phytopathol 43:337–359

    Article  CAS  PubMed  Google Scholar 

  • Gaur A, Adholeya A (2004) Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. Curr Sci 86:528–534

    CAS  Google Scholar 

  • Gavrilescua M, Chisti Y (2005) Biotechnology-a sustainable alternative for chemical industry. Biotechnol Adv 23:471–499

    Article  CAS  Google Scholar 

  • Gentili F, Jumpponen A (2006) Potential and possible uses of bacterial and fungal biofertilizers. In: Rai MK (ed) Handbook of microbial biofertilizers. Food Products Press, New York, pp 1–28

    Google Scholar 

  • Gizaw B, Tsegay Z, Tefera G, Aynalem E, Wassie M, Abatneh E (2017) Phosphate solubilizing fungi isolated and characterized from Teff rhizosphere soil collected from North Showa zone, Ethiopia. Afr J Microbiol Res 11:687–696

    Article  CAS  Google Scholar 

  • Grant CA, Bailey LD, Harapiak JT, Flore NA (2002) Effect of phosphate source, rate and cadmium content and use of Penicillium bilaii on phosphorus, zinc and cadmium concentration in durum wheat grain. J Sci Food Agric 82:301–308

    Article  CAS  Google Scholar 

  • Haggag WM, Mohamed HAA (2007) Biotechnological aspects of microorganisms used in plant biological control. Am Eurasian J Sustainable Agric 1:7–12

    Google Scholar 

  • Harman GE (2000) Myths and dogmas of biocontrol: changes in perception derived from research on Trichoderma harzianum T-22. Plant Dis 84:377–393

    Article  CAS  PubMed  Google Scholar 

  • Hart MM, Trevors JT (2005) Microbe management: application of mycorrhizal fungi in sustainable agriculture. Front Ecol Environ 3:533–539

    Article  Google Scholar 

  • Hildebrandt U, Regvar M, Bothe H (2007) Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry 68:139–146

    Article  CAS  PubMed  Google Scholar 

  • Idris EES, Iglesias DJ, Talon M, Borriss R (2007) Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Mol Plant-Microbe Interact 20:619–626

    Article  CAS  PubMed  Google Scholar 

  • Ipsilantis I, Sylvia DM (2007) Abundance of fungi and bacteria in a nutrient-impacted Florida wetland. Appl Soil Ecol 35:272–280

    Article  Google Scholar 

  • Irtwange VS (2006) Application of biological control agents in pre- and postharvest operations. Agric Eng Int: CIGR J 3:1–12

    Google Scholar 

  • Jackson RM, Walker C, Luff S, McEvoy C (1995) Inoculation of Sitka spuce and Douglas fir with ectomycorrhizal fungi in the United Kingdom. Mycorrhiza 5:165–173

    Article  Google Scholar 

  • Jenkins EN, Heviefo G, Langewald J, Cherry JA, Lomer JC (1998) Development of mass production technology for aerial conidia for use as mycopesticides. Biocontrol News Inf 19:21–31

    Google Scholar 

  • Kanokmedhakul S, Kanokmedhakul K, Phonkerd N, Soytong K, Kongsaree P, Suksamrarn A (2002) Antimycobacterial anthraquinone chromanone compound and diketopiperazine alkaloid from the fungus Chaetomium globosum KMITL-N0802. Planta Med 68:834–836

    Article  CAS  PubMed  Google Scholar 

  • Kanokmedhakul S, Kanokmedhakul K, Nasomjai P, Louangsysouphanh S, Soytong K, Isobe M, Kongsaeree P, Prabpai S, Suksamran A (2006) Antifungal azaphilones from Chaetomium cupreum CC3003. J Nat Prod 69:891–895

    Article  CAS  PubMed  Google Scholar 

  • Kapoor R, Sharma D, Bhatnagar AK (2008) Arbuscular mycorrhizae in micropropagation systems and their potential applications. Sci Hortic 116:227–239

    Article  Google Scholar 

  • Khanday M, Bhat RA, Haq S, Dervash MA, Bhatti AA, Nissa M, Mir MR (2016) Arbuscular mycorrhizal fungi boon for plant nutrition and soil health. In: Hakeem KR, Akhtar J, Sabir M (eds) Soil science: agricultural and environmental prospectives. Springer International Publishing, Cham, pp 317–332

    Chapter  Google Scholar 

  • Khetan SK (2001) Microbial pest control. Marcel Dekker, Inc, New York, Basel, p 300

    Google Scholar 

  • Kim BS, Hwang BK (2004) Biolofungicides. In: Dilip KA (ed) Fungal biotechnology in agricultural, food, and environmental applications. M. Dekker, Cop, New York, pp 123–133

    Google Scholar 

  • Kim BS, Hwang BK (2007) Microbial fungicides in the control of plant diseases. J Phytopathol 155:641–653

    Article  CAS  Google Scholar 

  • Kulkarni M, Chaudhari R, Chaudhari A (2007) Novel tensio-active microbial compounds for biocontrol applications. In: Ciancio A, Mukerji KG (eds) General concepts in integrated pest and disease management. Springer, Berlin, pp 295–304

    Chapter  Google Scholar 

  • le Tacon F, Alvarez IF, Bouchard D, Henrion B, Jackson RM, Luff S, Parlade JI, Pera J, Stenström E, Villeneuve N, Walker C (1992) Variations in field response of forest trees of nursery ectomycorrhizal inoculation in Europe. In: Read DJ, Lewis DH, Fitter AH, Alexander IJ (eds) Mycorrhizas in ecosystems. CAB International, Wallingford, pp 119–134

    Google Scholar 

  • Lian B, Wang B, Pan M, Liu C, Teng HH (2008) Microbial release of potassium from K bearing minerals by thermophilic fungus Aspergillus fumigatus. Geochim Cosmochim Acta 72:87–98

    Article  CAS  Google Scholar 

  • Lindsey DL, Baker R (1967) Effect of certain fungi on dwarf tomatoes grown under gnotobiotic conditions. Phytopathology 57:1262–1263

    Google Scholar 

  • Lonhienne CP, Lonhienne TGA, Yeoh YK, Webb RI, Lakshmanan P, Chan CX, Lim PE, Ragan MA, Schmidt S, Hugenholtz P (2014) A new species of Burkholderia isolated from sugarcane roots promotes plant growth. Microb Biotechnol 7:142–154

    Article  PubMed  CAS  Google Scholar 

  • Malik KA, Hafeez FY, Mirza MS, Hameed S, Rasul G, Bilal R (2005) Rhizospheric plant – microbe interactions for sustainable agriculture. In: Wang Y-P, Lin M, Tian Z-X, Elmerich C, Newton WE (eds) Biological nitrogen fixation, sustainable agriculture and the environment. Springer, The Netherlands, pp 257–260

    Chapter  Google Scholar 

  • Marin M (2006) Arbuscular mycorrhizal inoculation in nursery practice. In: Rai MK (ed) Handbook of microbial biofertilizers. Food Products Press, New York, pp 289–324

    Google Scholar 

  • Marx DH, Kenney DS (1982) Production of ectomycorrhizal fungus inoculum. In: Schenck NC (ed) Methods and principles of mycorrhizal research St. American Phytopathological Society, Paul, pp 131–146

    Google Scholar 

  • Marx DH, Cordell CE, Kenney DS, Mexal JG, Artman JD, Riffle JW, Molina RJ (1984) Commercial vegetative inoculum of Pisolithus tinctorius and inoculation techniques for development of ectomycorrhizae on bareroot tree seedlings. For Sci 25:1–101

    Google Scholar 

  • Mehmood MA, Qadri H, Bhat RA, Rashid A, Ganie SA, Dar GH (2019) Heavy metal contamination in two commercial fish species of a trans-Himalayan freshwater ecosystem. Environ Monit Assess 191:104. https://doi.org/10.1007/s10661-019-7245-2

    Article  CAS  PubMed  Google Scholar 

  • Mikola P (1969) Mycorrhizal fungi of exotic forest plantations. Karstenia 10:169–176

    Article  Google Scholar 

  • Mikola P (1970) Mycorrhizal inoculation in afforestation. Int Rev For Res 3:123–196

    Google Scholar 

  • Mitchell AM, Strobel GA, Hess WM, Vargas PN, Ezra D (2008) Muscodor crispans, a novel endophyte from Ananas ananassoides in the Bolivian Amazon. Fungal Divers 31:37–43

    Google Scholar 

  • Muraleedharan H, Seshadri S, Perumal K (2010) Booklet on bio-fertilizer (Phosphobacteria). Shri AMM Murugappa Chettiar Research Centre Taramani, Chennai, pp 10–11

    Google Scholar 

  • Mushtaq N, Bhat RA, Dervash MA, Qadri H, Dar GH (2018) Biopesticides: the key component to remediate pesticide contamination in an ecosystem. In: Environmental contamination and Remediation. Cambridge Scholars Publishing, Cambridge, pp 152–178

    Google Scholar 

  • Naqvi NS, Mukerji KG (2000) Mycorrhizal technology in plant micropropagation system. In: Mukerji KG, Chamola BP, Singh J (eds) Mycorrhizal biology. Kluwer Academic/Plenum Publishers, New York, pp 217–233

    Chapter  Google Scholar 

  • Pal K, Gardener BM (2006) Biological control of plant pathogens. Plant Health Instructor APSnet:1–25. https://doi.org/10.1094/PHI-A-2006-1117-02

    Article  Google Scholar 

  • Park JH, Choi GJ, Jang SK, Lim KH, Kim TH, Cho YK, Kim JC (2005) Antifungal activity against plant pathogenic fungi of chaetoviridins isolated from Chaetomium globosum. FEMS Microbiol Lett 252:309–313

    Article  CAS  PubMed  Google Scholar 

  • Paterson RRM (2006) Fungi and fungal toxins as weapons. Mycol Res 110:1003–1010

    Article  CAS  PubMed  Google Scholar 

  • Paulitz TC, Belanger RR (2001) Biological control in greenhouse system. Annu Rev Phytopathol 39:103–133

    Article  CAS  PubMed  Google Scholar 

  • Pereira OL, Barreto RW, Cavallazzi JRP, Braun U (2007) The mycobiota of the cactus weed Pereskia aculeata in Brazil, with comments on the life-cycle of Uromyces pereskiae. Fungal Divers 25:127–140

    Google Scholar 

  • Perry DA, Molina R, Amaranthus MP (1987) Mycorrhizae, mycorrhizospheres and reforestation: current knowledge and research needs. Can J For Res 17:929–940

    Article  Google Scholar 

  • Pradhan N, Sukla L (2005) Solubilization of inorganic phosphates by fungi isolated from agriculture soil. Afr J Biotechnol 5:850–854

    Google Scholar 

  • Radhakrishnan R, Shim KB, Lee BW, Hwang CD, Pae SB, Park CH (2013) IAA-producing Penicillium sp. NICS01 triggers plant growth and suppresses Fusarium sp.-induced oxidative stress in sesame (Sesamum indicum L.). J Microbiol Biotechnol 23:856–863

    Article  CAS  PubMed  Google Scholar 

  • Raghukumar C (2008) Marine fungal biotechnology: an ecological perspective. Fungal Divers 31:19–35

    Google Scholar 

  • Raja P (2006) Status of endomycorrhizal (AMF) biofertilizer in the global market. In: Rai MK (ed) Handbook of microbial biofertilizers. Food Products Press, New York, pp 395–416

    Google Scholar 

  • Rashid A, Bhat RA, Qadri H, Mehmood MA (2019) Environmental and socioeconomic factors induced blood lead in children: an investigation from Kashmir, India. Environ Monit Assess 191(2):76. https://doi.org/10.1007/s10661-019-7220-y

    Article  PubMed  Google Scholar 

  • Ricard JL, Ricard TJ (1997) The ethics of biofungicides – A case study: Trichoderma harzianum ATCC 20476 on Elsanta strawberries against Botrytis cinerea (gray mold). Agric Hum Values 14:251–258

    Article  Google Scholar 

  • Rinaldi AC, Comandini O, Kuyper TW (2008) Ectomycorrhizal fungal diversity: separating the wheat from the chaff. Fungal Divers 33:1–45

    Google Scholar 

  • Rola CA (2000) Economic perspective for agricultural biotechnology research planning. Philippine Institute for Development Studies, Makati, p 28

    Google Scholar 

  • Rosslenbroich HJ, Stuebler D (2000) Botrytis cinerea – history of chemical control and novel fungicides for its management. Crop Prot 19:557–561

    Article  CAS  Google Scholar 

  • Sachdev D, Chaudhari H, Kasture VM, Dhavale DD, Chopade BA (2009) Isolation and characterization of indole acetic acid (IAA) producing Klebsiella pneumonia strains from rhizosphere of wheat (Triticum aestivum) and their effect on plant growth. Indian J Exp Biol 47:993–1000

    CAS  PubMed  Google Scholar 

  • Sasikala C, Ramana C (1997) Biodegradation and metabolism of unusual carbon compounds by Anoxygenic phototrophic Bacteria. Adv Microb Physiol 39:339–377

    Article  Google Scholar 

  • Schwartz MW, Hoeksema JD, Gehring CA, Johnson NC, Klironomos JN, Abbott LK, Pringle A (2006) The promise and the potential consequences of the global transport of mycorrhizal fungal inoculum. Ecol Lett 9:501–515

    Article  PubMed  Google Scholar 

  • Shenoy BD, Jeewon R, Hyde KD (2007) Impact of DNA sequence-data on the taxonomy of anamorphic fungi. Fungal Divers 26:1–54

    Google Scholar 

  • Singh S, Pandey A, Palni LMS (2008) Screening of arbuscular mycorrhizal fungal consortia developed from the rhizospheres of natural and cultivated tea plants for growth promotion in tea (Camellia sinensis (L.) O. Kuntze). Pedobiologia 52:119–125

    Article  Google Scholar 

  • Singh DV, Bhat RA, Dervash MA, Qadri H, Mehmood MA, Dar GH, Hameed M, Rashid N (2020) Wonders of nanotechnology for remediation of polluted aquatic environs. In: Qadri H, Bhat RA, Dar GH, Mehmood MA (eds) Freshwater pollution dynamics and remediation. Springer Nature, Singapore, pp 319–339

    Chapter  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic Press, London

    Google Scholar 

  • Smith SE, Zhu YG (2001) Application of arbuscular mycorrhizal fungi: potentials and challenges. In: Stephen BP, Hyde KD (eds) Bio-exploitation of filamentous fungi, Fungal Diversity Research Series, vol 6. Fungal Diversity Press, Hong Kong, pp 291–308

    Google Scholar 

  • Soares DJ, Barreto RW (2008) Fungal pathogens of the invasive riparian weed Hedychium coronarium from Brazil and their potential for biological control. Fungal Divers 28:85–96

    Google Scholar 

  • Sofi NA, Bhat RA, Rashid A, Mir NA, Mir SA, Lone R (2017) Rhizosphere mycorrhizae communities an input for organic agriculture. In: Varma A et al (eds) Mycorrhiza-nutrient uptake, biocontrol, ecorestoration. Springer International Publishing, Cham, pp 387–413

    Chapter  Google Scholar 

  • Soytong K, Kanokmadhakul S, Kukongviriyapa V, Isobe M (2001) Application of Chaetomium species (Ketomium®) as a new broad spectrum biological fungicide for plant disease control: a review article. Fungal Divers 7:1–15

    Google Scholar 

  • Soytong K, Srinon W, Rattanacherdchai K, Kanokmedhakul S, Kanokmedhakul K (2005) Application of antagonistic fungi to control anthracnose disease of grape. Int J Agric Technol 1:33–41

    Google Scholar 

  • Spadaro D, Gullino LM (2005) Improving the efficacy of biocontrol agents against soil borne pathogens. Crop Prod 24:601–613

    Article  Google Scholar 

  • Tang W, Yang H, Ryder M (2001) Research and application of Trichoderma spp. in biological control of plant pathogen. In: Pointing SB, Hyde KD (eds) Bio-exploitation of filamentous fungi, Fungal Diversity Research Series, vol 6. Fungal Diversity Press, Hong Kong, pp 403–435

    Google Scholar 

  • Tanu, Deobagkar DD, Khandeparker R, Sreepada RA, Sanaye SV, Pawar HB (2012) A study on bacteria associated with the intestinal tract of farmed yellow seahorse, Hippocampus kuda (Bleeker 1852): characterization and extracellular enzymes. Aquacult Res 43:386–394

    Google Scholar 

  • Tejesvi MV, Kini KR, Prakash HS, Subbiah V, Shetty HS (2007) Genetic diversity and antifungal activity of species of Pestalotiopsis isolated as endophytes from medicinal plants. Fungal Divers 24:37–54

    Google Scholar 

  • Than PP, Prihastuti H, Phoulivong S, Taylor PWJ, Hyde KD (2008a) Chilli anthracnose disease caused by Colletotrichum species. J Zhejiang Univ Sci B9:764–778

    Article  Google Scholar 

  • Than PP, Shivas RG, Jeewon R, Pongsupasamit S, Marney TS, Taylor PWJ, Hyde KD (2008b) Epitypification and phylogeny of Colletotrichum acutatum J.H. Simmonds. Fungal Divers 28:97–108

    Google Scholar 

  • Varma A, Verma S, Sudha SN, Butehorn B, Franken P (1999) Piriformospora indica, a cultivable plant-growth-promoting root endophyte. Appl Environ Microbiol 65:2741–2744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varma A, Bakshi M, Lou B, Hartmann A, Oelmueller R (2012) Piriformospora indica: a novel plant growth-promoting mycorrhizal fungus. Agric Res 1:117–131

    Article  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Woo SL, Lorito M (2008) Trichoderma plant pathogen interactions. Soil Biol Biochem 40:1–10

    Article  CAS  Google Scholar 

  • Voorrips RE, Finkers R, Sanjaya L, Groenwold R (2004) QTL mapping of anthracnose (Colletotrichum spp.) resistance in a cross between Capsicum annuum and C. chinense. Theor Appl Genet 109:1275–1282

    Article  PubMed  Google Scholar 

  • Wakelin SA, Werren PR, Ryder HM (2004) Phosphate solubilization by Penicillium spp. closely associated with wheat root. Biol Fertil Soils 40:36–43

    Article  CAS  Google Scholar 

  • Waqas M, Khan AL, Kamran M, Hamayun M, Kang S, Kim Y, Lee I (2012) Endophytic Fungi produce gibberellins and indole acetic acid and promotes host-plant growth during stress. Molecules 17:10754–10773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wesseling C, Corriols M, Bravo V (2005) Acute pesticide poisoning and pesticide registration in Central America. Toxicol Appl Pharmacol 207:S697–S705

    Article  CAS  Google Scholar 

  • White DP (1941) Prairie soil as a medium for tree growth. Ecology 22:398–407

    Article  Google Scholar 

  • Whitelaw MA, Hardena TJ, Helyar KR (1999) Phosphate solubilisation in solution culture by the soil fungus Penicillium radicum. Soil Biol Biochem 3:655–665

    Article  Google Scholar 

  • Wilde HE (1944) Mycorrhizae and silviculture. J For 42:290

    Google Scholar 

  • Yeasmin T, Zaman P, Rahman A, Absar N, Khanum NS (2007) Arbuscular mycorrhizal fungus inoculum production in rice plants. Afr J Agric Res 2:463–467

    Google Scholar 

  • Yedidia I, Srivastva AK, Kapulnik Y, Chet I (2001) Effect of Trichoderma harzianum on microelement concentrations and increased growth of cucumber plants. Plant Soil 235:235–242

    Article  CAS  Google Scholar 

  • Zhao ZW, Wang GH, Yang L (2003) Biodiversity of arbuscular mycorrhizal fungi in tropical rainforests of Xishuangbanna, southwest China. Fungal Divers 13:233–242

    Google Scholar 

  • Zhu GS, Yu ZN, Gui Y, Liu ZY (2008) A novel technique for isolating orchid mycorrhizal fungi. Fungal Divers 33:123–137

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tak, IuR., Dar, G.H., Bhat, R.A. (2021). Fungi and Their Potential as Biofertilizers. In: Dar, G.H., Bhat, R.A., Mehmood, M.A., Hakeem, K.R. (eds) Microbiota and Biofertilizers, Vol 2. Springer, Cham. https://doi.org/10.1007/978-3-030-61010-4_11

Download citation

Publish with us

Policies and ethics