Skip to main content

Dynamic Fracture-Toughness Testing of a Hierarchically Nano-Structured Solid

  • Conference paper
  • First Online:
Fracture, Fatigue, Failure and Damage Evolution , Volume 3

Abstract

The polyurea coating is found very useful in strengthening structures ranging from helmets to concrete structures under impact or blast loading. We believe that the hierarchical architecture of nano and microstructures is the bases of the strengthening mechanism, which provides scale-dependent stress laxation and energy dissipation. Here, a challenge is to characterize the strengthening mechanisms not only in the bulk of the copolymer but also at the coating/substrate interface. To this end, we have found that the tapping-mode images of an atomic-force-microscope (AFM) are ideal markers for digital image correlation (DIC) analysis of nano/micro-scale deformation. The tapping-mode images typically exhibit clustered hierarchical structures of hard and soft domains that can trace multiscale deformation mechanisms. To study the role of the hierarchical deformation mechanisms in dynamic toughening, we have developed a line-image shearing interferometer (L-ISI) for plate impact experiments of dynamic fracture testing. The L-ISI measures the variation of the normal-displacement-gradient over time along a line on the back surface of a pre-cracked specimen loaded by plate impact. The time history of the displacement gradient forms fringes on the streak-camera image, and the fringes are inverted to determine the time history of the crack speed and the dynamic toughness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grujicic, M., et al.: Experimental and computational study of the shearing resistance of polyurea at high pressures and high strain rates. J. Mater. Eng. Perform. 24(2), 778–798 (2014)

    Article  Google Scholar 

  2. Kim, K.-S.: Pressure- and rate-dependent plastic flow of nano-phase segregated polyurea copolymer (IMECE Paper # -13559). Drucker Medal Symposium, ASME 2019 IMECE (November 2019)

    Google Scholar 

  3. Jiao, T., et al.: Pressure-Sensitivity and Tensile Strength of an Elastomer at High Strain Rates. In: Elert, M., Furnish, M.D., Chau, R., Holmes, N., Nguyen, J. (eds.) Shock Compression of Condensed Matter, pp. 707–710 (2007)

    Google Scholar 

  4. Ravichandran, G., Clifton, R.J.: Dynamic fracture under plane wave loading. Int. J. Fracture. 40, 157–201 (1989)

    Article  Google Scholar 

  5. Bolton, W., Higgins, R.A.: Materials for Engineers and Technicians. Newnes, London (2010)

    Google Scholar 

  6. Kim, K.-S.: Digital Image Correlation at a Small World of Nano Science and Technology (Plenary). iDICs Annual Conference, October 2019

    Google Scholar 

Download references

Acknowledgments

This work is supported by grant N00014-18-1-2513, from the US Office of Naval Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung-Suk Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Society for Experimental Mechanics, Inc.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kim, KS., Jin, H., Jiao, T., Clifton, R.J. (2021). Dynamic Fracture-Toughness Testing of a Hierarchically Nano-Structured Solid. In: Xia, S., Beese, A., Berke, R.B. (eds) Fracture, Fatigue, Failure and Damage Evolution , Volume 3. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-030-60959-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60959-7_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60958-0

  • Online ISBN: 978-3-030-60959-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics