Skip to main content

Determination of Mixed-Mode (I/III) Fracture of Polycarbonate

  • Conference paper
  • First Online:
Fracture, Fatigue, Failure and Damage Evolution , Volume 3

Abstract

In many engineering applications, Mode-III type loading in the crack tip region is more common. Since loading in structures oftentimes is quite complex, the crack tip region generally experiences Mixed-Mode conditions. In this work, torsional loading experiments are performed by employing a modified spirally cracked cylindrical specimen. The cylindrical specimen used in all experiments is machined to incorporate a full revolution, spiral v-notch crack. The v-notch crack is inclined at an angle of 67.5° with respect to the specimen centerline to obtain Mixed-Mode (I/III) crack tip conditions under torsional loading. By combining the experimental measurements with detailed numerical simulations, the Mixed-Mode (I/III) fracture parameters for polycarbonate (PC) are quantified using an interaction integral method. The elastic-viscoplastic material response of the PC material, required for numerical simulations, is determined by performing standard tensile loading experiments. The Mixed-Mode (I/III) fracture toughness, as well as the stress intensity factors for Mode-I and Mode-III crack tip conditions are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Faye, A., Basu, S., Parameswaran, V.: Effect of loading rate on dynamic fracture toghness of polycarbonate. Dyn. Behav. Mater., 139–145 (2014)

    Google Scholar 

  2. Cho, K., Yang, J.H., Kang, B.I., Park, C.E.: Notch sensitivity of polycarbonate and toughened polycarbonate. J. Appl. Polym. Sci. 89, 3115–3121 (2003). https://doi.org/10.1002/app.12502

    Article  Google Scholar 

  3. Gearing, B.P., Anand, L.: Notch-sensitive fracture of polycarbonate. Int. J. Solids Struct. 41, 827–845 (2004). https://doi.org/10.1016/j.ijsolstr.2003.09.058

    Article  MATH  Google Scholar 

  4. Salazar, A., Rodríguez, J., Martinez, A.B.: Fracture toughness reliability in polycarbonate: notch sharpening effects. Indian J. Mater. Sci. 2013, 1–4 (2013). https://doi.org/10.1155/2013/187802

    Article  Google Scholar 

  5. LD, G.: Crazing, yielding, and fracture of polymers. I. Ductile brittle transition in polycarbonate. J. Appl. Polym. Sci. 13, 2129–2147 (2018)

    Google Scholar 

  6. Parvin, M., Williams, J.G.: Ductile-brittle fracture transitions in polycarbonate. Int. J. Fract. 11, 963–972 (1975). https://doi.org/10.1007/BF00033842

    Article  Google Scholar 

  7. Sundaram, B.M., Tippur, H.V.: Dynamic mixed-mode fracture behaviors of PMMA and polycarbonate. Eng. Fract. Mech. 176, 186–212 (2017)

    Article  Google Scholar 

  8. Ravi-Chandar, K.: On the failure mode transitions in polycarbonate under dynamic mixed-mode loading. Int. J. Solids Struct. 32, 925–938 (1995)

    Article  Google Scholar 

  9. Ishikawa, M., Noarisawa, I., Ogawa, H.: Criterion for craze nucleation in polycarbonate. J. Polym. Sci. Polym. Phys. Ed. 15, 1791–1804 (1977)

    Article  Google Scholar 

  10. Liu, S., Chao, Y.J., Zhu, X.: Tensile-shear transition in mixed mode I/III fracture. Int. J. Solids Struct. 41, 6147–6172 (2004)

    Article  Google Scholar 

  11. Boyce, M.C.: Large Inelastic Deformation of Glassy Polymers. PhD thesis, Massachusetts Institute of Technology (1986)

    Google Scholar 

  12. Kidane, A., Wang, J.: A new method for dynamic fracture toughness determination using torsion Hopkinson pressure bar. In: Dynamic Behavior of Materials, Conference Proceedings of the Society for Experimental Mechanics, pp. 307–312, New York (2013)

    Google Scholar 

  13. Wang, J.-A., Liu, K.C.: Fracture Toughness Determination Using Spiral-Grooved Cylindrical Specimen and Pure Torsional Loading, p. 2 (2003)

    Google Scholar 

  14. Fahem, A., Kidane, A.: Modification of Benthem solution for mode I fracture of cylinder with spiral crack subjected to torsion. Fract. Fatigue Fail. Damage Evol. Proc. Soc. Exp. Mech. Ser. 6, 57–63 (2019). https://doi.org/10.1007/978-3-319-95879-8_10

    Article  Google Scholar 

  15. Fahem, A., Kidane, A.: A progression on the determination of dynamic fracture initiation toughness using spiral crack. Fract. Fatigue Fail. Damage Evol. Conf. Proc. Soc. Exp. Mech. Ser. 6, 89–95 (2019). https://doi.org/10.1007/978-3-319-95879-8_15

    Article  Google Scholar 

  16. ASTM: Designation: ASTM D638-14 standard test method for tensile properties of plastics. ASTM Int. (2015). https://doi.org/10.1520/D0638-14

  17. Sutton, M.A., Orteu, J.J., Schreier, H.W.: Image Correlation for Shape, Motion and Deformation Measurements- Basic Concepts, Theory and Applications. Image Rochester NY 341 (2009)

    Google Scholar 

  18. Sutton, M.A., Deng, X., Liu, J., Yang, L.: Determination of elastic-plastic stresses and strains from measured surface strain data. Exp. Mech., 99–112 (1996)

    Google Scholar 

  19. Fahem, A., Kidane, A.: Hybrid computational and experimental approach to identify the dynamic initiation fracture toughness at high loading rate. Dyn. Behav. Mater. Conf. Proc. Soc. Exp. Mech. 1, 141–146 (2018). https://doi.org/10.1007/978-3-319-62956-8_24

    Article  Google Scholar 

  20. Fahem, A., Kidane, A.: A general approach to evaluate the dynamic fracture toughness of materials. Dyn. Behav. Mater. Conf. Proc. Soc. Exp. Appl. Mech. 1, 185–194 (2017). https://doi.org/10.1007/978-3-319-41132-3_26

    Article  Google Scholar 

  21. Fahem, A., Kidane, A., Sutton, M.: Mode-I dynamic fracture initiation toughness using torsion load. Eng. Fract. Mech. 213, 53–71 (2019). https://doi.org/10.1016/j.engfracmech.2019.03.039

    Article  Google Scholar 

  22. Fahem, A.F., Kidane, A., Sutton, M.: A model for calculating geometry factors for mode I stress intensity factor of a cylindrical specimen with spiral crack subjected to torsion. Eng. Fract. Mech. under review (2019)

    Google Scholar 

  23. Beer, F.P., Johnston, E.R., DeWolf, J.T.: Mechanics of Materials. McGraw-Hill, Boston (2006)

    Google Scholar 

Download references

Acknowledgments

The support provided by the Ministry of Higher Education and Scientific Research, University of Al-Qadisiyah, College of Engineering, Mechanical Engineering Department, Iraq is greatly acknowledged. The support of the Department of Mechanical Engineering at the University of South Carolina and the Center for Mechanics, Materials, and NDE in the development and maintenance of the dynamic experimental equipment is deeply appreciated. The support of Dr. Jordan at the Air Force Office of Scientific Research and the Department of Defense DURIP program is gratefully appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali F. Fahem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Society for Experimental Mechanics, Inc.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fahem, A.F., Gupta, V., Kidane, A., Sutton, M.A. (2021). Determination of Mixed-Mode (I/III) Fracture of Polycarbonate. In: Xia, S., Beese, A., Berke, R.B. (eds) Fracture, Fatigue, Failure and Damage Evolution , Volume 3. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-030-60959-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60959-7_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60958-0

  • Online ISBN: 978-3-030-60959-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics