Skip to main content

Renal Vessels

  • Chapter
  • First Online:
Imaging in Nephrology

Abstract

In this chapter we illustrate the different imaging techniques available for the study of renal vessels, with particular reference to advantages and limitations of each technique and to selection criteria according to the pathology to be studied. Ultrasound is the first-line technique to study renal pathology and can provide information about renal morphology and proximal urinary tract. Conventional B-mode ultrasound can be completed by Doppler analysis for the evaluation of renal vessels. Computed tomography (CT) is a second-level technique to study renal vessels. CT is the technique of choice for patients with non-MR-compatible devices or with severe claustrophobia and limited breath-hold capacity, given its shorter acquisition time compared to MRA. CT is mostly preferred to MRI for screening of potential renal donors, when very high spatial resolution is required or when it is particularly important to demonstrate peripheral renal arteries. Magnetic resonance imaging (MRI) techniques have recently expanded and are now suitable not only for providing excellent depiction of kidney anatomy, but also for studying several functional aspects of kidney physiology. MRI techniques provide the same results of CT and they may be even preferred over it, thanks to the lack of ionizing radiation and iodinated contrast-induced nephropathy, in particular in those cases in which MRI can be performed without contrast medium. Renal arteriography is nowadays performed for interventional purposes (percutaneous transluminal angioplasty, stent placement, renal embolization, or denervation) instead of diagnostic scope, thanks to improvements of renal artery imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hazirolan T, Oz M, Turkbey B, et al. CT angiography of the renal arteries and veins: normal anatomy and variants. Diagn Interv Radiol. 2011;17:67–73.

    PubMed  Google Scholar 

  2. Beregi JP, Mauroy B, Willoteaux S, et al. Anatomic variation in the origin of the main renal arteries: spiral CTA evaluation. Eur Radiol. 1999;9:1330–4.

    Article  CAS  PubMed  Google Scholar 

  3. Quaia E. Radiological imaging of the kidney. Berlin: Springer; 2011.

    Book  Google Scholar 

  4. Kadir S. Angiography of the kidneys. Diagnostic angiography. Philadelphia: Saunders; 1986. p. 445–95.

    Google Scholar 

  5. Turkvatan A, Ozdemir M, Cumhur T, Olcer T. Multidetector CT angiography of renal vasculature: normal anatomy and variants. Eur Radiol. 2009;19:236–44.

    Article  PubMed  Google Scholar 

  6. Tuna IS, Tatli S. Contrast-enhanced CT and MR imaging of renal vessels. Abdom Imaging. 2014;39:875–91.

    Article  PubMed  Google Scholar 

  7. Urban BA, Ratner LE, Fishman EK. Three-dimensional volume-rendered CT angiography of the renal arteries and veins: normal anatomy, variants, and clinical applications. Radiographics. 2001;21:373–86.

    Article  CAS  PubMed  Google Scholar 

  8. Mathews R, Smith PA, Fishman EK, Marshall FF. Anomalies of the inferior vena cava and renal veins: embryologic and surgical considerations. Urology. 1999;53:873–80.

    Article  CAS  PubMed  Google Scholar 

  9. Harrison LH Jr, Flye MW, Seigler HF. Incidence of anatomical variants in renal vasculature in the presence of normal renal function. Ann Surg. 1978;188:83–9.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Beckmann CF, Abrams HL. Circumaortic venous ring: incidence and significance. AJR. 1979;132:561–5.

    Article  CAS  PubMed  Google Scholar 

  11. Matsuoka S, Antoniou EE, Mori K, Hayabuchi Y, Kuroda Y. The first report of a patient with interrupted inferior vena cava, multiple post-renal veins and azygos–hemiazygos continuation. Acta Paediatr Jpn. 1995;37:514–7.

    Article  CAS  PubMed  Google Scholar 

  12. Al-Katib S, Shetty M, Jafri SM, Jafri SZ. Radiologic assessment of native renal vasculature: a multimodality review. Radiographics. 2017;37:136–56.

    Article  PubMed  Google Scholar 

  13. Zhang HL, Sos TA, Winchester PA, Gao J, Prince MR. Renal artery stenosis: imaging options, pitfalls, and concerns. Prog Cardiovasc Dis. 2009;52:209–19.

    Article  PubMed  Google Scholar 

  14. Subramaniam M, Mizzi A, Roditi G. Magnetic resonance angiography in potential live renal donors: a joint radiological and surgical evaluation. Clin Radiol. 2004;59:335–41.

    Article  CAS  PubMed  Google Scholar 

  15. Israel GM, Lee VS, Edye M, et al. Comprehensive MR imaging in the preoperative evaluation of living donor candidates for laparoscopic nephrectomy: initial experience. Radiology. 2002;225:427–32.

    Article  PubMed  Google Scholar 

  16. Xu X, Lin X, Huang J, Pan Z, Zhu X, Chen K, et al. The capability of inflow inversion recovery magnetic resonance compared to contrast-enhanced magnetic resonance in renal artery angiography. Abdom Radiol. 2017;2:2479–87.

    Article  Google Scholar 

  17. Safian RD, Textor SC. Renal- artery stenosis. N Engl J Med. 2001;344:431–42.

    Article  CAS  PubMed  Google Scholar 

  18. Feldman RL, Wargovich TJ, Bittl JA. No-touch technique for reducing aortic wall trauma during renal artery stenting. Catheter Cardiovasc Interv. 1999;46(2):245–8.

    Article  CAS  PubMed  Google Scholar 

  19. Zachrisson K, Herlitz H, Lönn L, Falkenberg M, Eklöf H. Duplex ultrasound for identifying renal artery stenosis: direct criteria re-evaluated. Acta Radiol. 2017;58:176–82.

    Article  PubMed  Google Scholar 

  20. Andersson Z, Thisted E, Andersen UB. Renal branch artery stenosis: a diagnostic challenge? A case report with review of the literature. Urology. 2017;100:218–20.

    Article  PubMed  Google Scholar 

  21. Tafur-Soto JD, White CJ. Renal artery stenosis. Cardiol Clin. 2015;33:59–73.

    Article  PubMed  Google Scholar 

  22. Staub D, Canevascini R, Huegli RW, et al. Best duplex-sonographic criteria for the assessment of renal artery stenosis--correlation with intra-arterial pressure gradient. Ultraschall Med. 2007;28:45–51.

    Article  CAS  PubMed  Google Scholar 

  23. Hoffmann U, Edwards JM, Carter S, et al. Role of duplex scanning for the detection of atherosclerotic renal artery disease. Kidney Int. 1991;39:1232–9.

    Article  CAS  PubMed  Google Scholar 

  24. Stavros AT, Parker SH, Yakes WF, et al. Segmental stenosis of the renal artery: pattern recognition of tardus and parvus abnormalities with duplex sonography. Radiology. 1992;184:487–92.

    Article  CAS  PubMed  Google Scholar 

  25. Boddi M. Renal ultrasound (and Doppler sonography) in hypertension: an update. Adv Exp Med Biol. 2017;956:191–208.

    Article  PubMed  Google Scholar 

  26. Schwerk WB, Restrepo IK, Stellwaag M, Klose KJ, Schade-Brittinger C. Renal artery stenosis: grading with image-directed Doppler US evaluation of renal resistive index. Radiology. 1994;190:785–90.

    Article  CAS  PubMed  Google Scholar 

  27. Bertolotto M, Quaia E, Galli G, Martinoli C, Locatelli M. Color Doppler sonographic appearance of renal perforating vessels in subjects with normal and impaired renal function. J Clin Ultrasound. 2000;28:267–76.

    Article  CAS  PubMed  Google Scholar 

  28. René PC, Oliva VL, Bui BT, et al. Renal artery stenosis: evaluation of Doppler US after inhibition of angiotensin-converting enzyme with captopril. Radiology. 1995;196:675–9.

    Article  PubMed  Google Scholar 

  29. Williams GJ, Macaskill P, Chan SF, et al. Comparative accuracy of renal duplex sonographic parameters in the diagnosis of renal artery stenosis: paired and unpaired analysis. AJR Am J Roentgenol. 2007;188:798–811.

    Article  PubMed  Google Scholar 

  30. Gottlieb RH, Lieberman JL, Pabico RC, Waldman DL. Diagnosis of renal artery stenosis in transplanted kidneys: value of Doppler waveform analysis of the intrarenal arteries. AJR Am J Roentgenol. 1995;165:1441–6.

    Article  CAS  PubMed  Google Scholar 

  31. Radermacher J, Chavan A, Bleck J, et al. Use of Doppler ultrasonography to predict the outcome of therapy for renal-artery stenosis. N Engl J Med. 2001;344:410–7.

    Article  CAS  PubMed  Google Scholar 

  32. Schäberle W, Leyerer L, Schierling W, Pfister K. Ultrasound diagnostics of renal artery stenosis: Stenosis criteria, CEUS and recurrent in-stent stenosis. Gefässchirurgie. 2016;21:4–13.

    Article  PubMed  Google Scholar 

  33. Missouris CG, Allen CM, Balen FG, Buckenham T, Lees WR, MacGregor GA. Non-invasive screening for renal artery stenosis with ultrasound contrast enhancement. J Hypertens. 1996;14:519–24.

    CAS  PubMed  Google Scholar 

  34. Lencioni R, Pinto S, Napoli V, Bartolozzi C. Noninvasive assessment of renal artery stenosis: current imaging protocols and future directions in ultrasonography. J Comput Assist Tomogr. 1999;23:S95–100.

    Article  PubMed  Google Scholar 

  35. Prokop M, Galanski M, van der Molen AJ, Schaefer-Prokop CM. (ed) Spiral and multislice computed tomography of the body. Stuttgart: Thieme; 2003.

    Google Scholar 

  36. Rountas C, Vlychou M, Vassiou K, et al. Imaging modalities for renal artery stenosis in suspected renovascular hypertension: prospective intraindividual comparison of color Doppler US, CT angiography, GD-enhanced MR angiography, and digital subtraction angiography. Ren Fail. 2007;29:295–302.

    Article  CAS  PubMed  Google Scholar 

  37. Tatli S. Magnetic resonance angiography of the aorta and peripheral arteries. In: Kwong RY, editor. Cardiovascular magnetic resonance imaging. Totowa: Humana Press; 2007. p. 567–612.

    Google Scholar 

  38. Baskaran V, Pereles FS, Nemcek AA Jr, et al. Gadolinium-enhanced 3D MR angiography of renal artery stenosis: a pilot comparison of maximum intensity projection, multiplanar reformatting, and 3D volume-rendering postprocessing algorithms. Acad Radiol. 2002;9:50–9.

    Article  PubMed  Google Scholar 

  39. Zhang LJ, Wu X, Yang GF, et al. Three-dimensional contrast-enhanced magnetic resonance venography for detection of renal vein thrombosis: comparison with multidetector CT venography. Acta Radiol. 2013;54:1125–13.

    Article  PubMed  Google Scholar 

  40. Kallistratos MS, Giannakopoulos A, German V, Manolis AJ. Diagnostic modalities of the most common forms of secondary hypertension. Hell J Cardiol. 2010;51:518–29.

    Google Scholar 

  41. Karasch T, Rubin J. Diagnosis of renal artery stenosis and renovascular hypertension. Eur J Ultrasound. 1998;7:S27–39.

    Article  PubMed  Google Scholar 

  42. Eklöf H, Ahlström H, Magnusson A, et al. A prospective comparison of duplex ultrasonography, captopril renography, MRA, and CTA in assessing renal artery stenosis. Acta Radiol. 2006;47:764–74.

    Article  PubMed  Google Scholar 

  43. Abdulsamea S, Anderson P, Biassoni L, et al. Pre- and postcaptopril renal scintigraphy as a screening test for renovascular hypertension in children. Pediatr Nephrol. 2010;25:317–22.

    Article  PubMed  Google Scholar 

  44. Prigent A, Cosgriff P, Gates GF, et al. Consensus report on quality control of quantitative measurements of renal function obtained from the renogram: International Consensus Committee from the Scientific Committee of Radionuclides in Nephrourology. Semin Nucl Med. 1999;29:146–59.

    Article  CAS  PubMed  Google Scholar 

  45. Kiratli PO, Caner B, Altun B, Cekirge S. Superiority of tc-99m MAG3 to tc-99m DTPA in treating a patient with mild renal artery stenosis. Ann Nucl Med. 2001;15:45–8.

    Article  CAS  PubMed  Google Scholar 

  46. Itoh K, Matsui Y, Kato C, Mochizuki T, Kitabatake A. Differences between 99mTc-DTPA and 99mTc-MAG3 captopril renographies in renovascular hypertension. Ann Nucl Med. 1996;10:251–5.

    Article  CAS  PubMed  Google Scholar 

  47. Kempi V. Renogram and deconvolution parameters in diagnosis of renal artery stenosis. Variants of background subtraction and analysis techniques. Nuklearmedizin. 2007;46:281–90.

    CAS  PubMed  Google Scholar 

  48. Reusz GS, Kis E, Cseprekál O, Szabó AJ, Kis E. Captopril-enhanced renal scintigraphy in the diagnosis of pediatric hypertension. Pediatr Nephrol. 2010;25:185–9.

    Article  PubMed  Google Scholar 

  49. Choi Y, Kang BC, Kim KJ, et al. Renovascular hypertension in children with moyamoya disease. J Pediatr. 1997;131:258–63.

    Article  CAS  PubMed  Google Scholar 

  50. Van de Ven PJG, Kaatee R, Beutler JJ, et al. Arterial stenting and balloon angioplasty in ostial atherosclerotic renovascular disease: a randomised trial. Lancet. 1999;353(9149):282–6.

    Article  PubMed  Google Scholar 

  51. Cooper CJ, Murphy TP, Cutlip DE, et al. Stenting and medical therapy for atherosclerotic renal-artery stenosis. N Engl J Med. 2014;370(1):13–22.

    Article  CAS  PubMed  Google Scholar 

  52. Wheatley K, Ives N, Gray R, et al. Revascularization versus medical therapy for renal-artery stenosis. N Engl J Med. 2009;361(20):1953–62.

    Article  PubMed  Google Scholar 

  53. Bax L, Woittiez AJ, Kouwenberg HJ, et al. Stent placement in patients with atherosclerotic renal artery stenosis and impaired renal function: a randomized trial. Ann Intern Med. 2009;150:840–8.

    Article  PubMed  Google Scholar 

  54. Mousa AY, AbuRahma AF, Bozzay J, et al. Update on intervention versus medical therapy for atherosclerotic renal artery stenosis. J Vasc Surg. 2015;61(6):1613–23.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Flors L, Leiva-Salinas CL, Ali Ahmad E, et al. MD CT angiography and MR angiography of nonatherosclerotic renal artery disease. Cardiovasc Intervent Radiol. 2011;34:1151–64.

    Article  PubMed  Google Scholar 

  56. Das CJ, Neyaz Z, Thapa P, Sharma S, Vashist S. Fibro-muscular dysplasia of the renal arteries: a radiological review. Int Urol Nephrol. 2007;39:233–8.

    Article  PubMed  Google Scholar 

  57. Slovut DP, Olin JW. Fibromuscular dysplasia. N Engl J Med. 2004;350:1862–71.

    Article  CAS  PubMed  Google Scholar 

  58. Persu A, Touze E, Mousseaux E, et al. Diagnosis and management of fibromuscular dysplasia: an expert consensus. Eur J Clin Investig. 2011;42(3):338–47.

    Article  Google Scholar 

  59. Trinquart L, Mounier-Vehier C, Sapoval M, et al. Efficacy of revascularization for renal artery stenosis caused by fibromuscular dysplasia. A systematic review and meta-analysis. Hypertension. 2010;56:525–32.

    Article  CAS  PubMed  Google Scholar 

  60. Working Group on Renovascular Hypertension. Detection, evaluation, and treatment of renovascular hypertension. Final report. Arch Intern Med. 1987;147:820–9.

    Article  Google Scholar 

  61. Dieter RS, Schmidt WS, Pacanowski JP, Jaff MR. Renovascular hypertension. Expert Rev Cardiovasc Ther. 2005;3:413–22.

    Article  PubMed  Google Scholar 

  62. Eskandari MK, Resnick SA. Aneurysms of the renal artery. Semin Vasc Surg. 2005;18:202–8.

    Article  PubMed  Google Scholar 

  63. Stanley JC, Rhodes EL, Gewertz BL, et al. Renal artery aneurysms. Significance of macroaneurysms exclusive of dissections and fibrodysplastic mural dilations. Arch Surg. 1975;110(11):1327–33.

    Article  CAS  PubMed  Google Scholar 

  64. Ohebshalom MM, Tah JA, Coll D, et al. Massive hematuria due to right renal artery mycotic pseudoaneurysm in a patient with subacute bacterial endocarditis. Urology. 2001;58(4):607.

    Article  CAS  PubMed  Google Scholar 

  65. Yacoe ME, Dake MD. Development and resolution of systemic and coronary artery aneurysms in Kawasaki disease. AJR. 1992;159(4):708–10.

    Article  CAS  PubMed  Google Scholar 

  66. Kawashima A, Sandler CM, Ernst RD, et al. CT evaluation of renovascular disease. Radiographics. 2000;20:1321–40.

    Article  CAS  PubMed  Google Scholar 

  67. Love WK, Robinette MA, Vernon CP. Renal artery aneurysm rupture in pregnancy. J Urol. 1981;126:809–11.

    Article  CAS  PubMed  Google Scholar 

  68. Rundback JH, Rizvi A, Rozenblit GN, et al. Percutaneous stent-graft management of renal artery aneurysms. J Vasc Interv Radiol. 2000;11:1189–93.

    Article  CAS  PubMed  Google Scholar 

  69. An HS, Kang TG, Yun HJ, et al. Hypertension caused by renal arteriovenous fistula. Korean Circ J. 2009;39:548–50.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Munoz IA, Bustos GA, Pardal AG, et al. Heart failure and severe pulmonary hypertension secondary to a giant renal arteriovenous malformation. J Ultrasound Med. 2006;25:933–7.

    Article  PubMed  Google Scholar 

  71. Riedlinger WF, Kissane JM, Gibfried M, Liapis H. Congenital bilateral renal arteriovenous malformation: an unrecognized cause of renal failure. Pediatr Dev Pathol. 2004;7:285–9.

    Article  PubMed  Google Scholar 

  72. Tatli S, Yucel EK, Lipton MJ. CT and MR imaging of the thoracic aorta: current techniques and clinical applications. Radiol Clin N Am. 2004;42:565–85.

    Article  PubMed  Google Scholar 

  73. Kanofsky JA, Lepor H. Spontaneous renal artery dissection. Rev Urol. 2007;9:156–60.

    PubMed  PubMed Central  Google Scholar 

  74. Katz-Summercorn AC, Borg CM, Harris PL. Spontaneous renal artery dissection complicated by renal infarction: a case report and review of the literature. Int J Surg Case Rep. 2012;3:257–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Bostwick DG, Chang L. Non-neoplastic diseases of kidney. Urologic surgical pathology. 2nd ed. Edinburgh: Mosby Elsevier; 2008. p. 39.

    Google Scholar 

  76. Amilineni V, Lackner DF, Morse WS, Srinivas N. Contrast-enhanced CT for acute flank pain caused by acute renal artery occlusion. AJR. 2000;174:105–6.

    Article  CAS  PubMed  Google Scholar 

  77. Sharma S, Saxena A, Talwar KK, et al. Renal artery stenosis caused by nonspecific arteritis (Takayasu disease): results of treatment with percutaneous transluminal angioplasty. AJR. 1992;158:417–22.

    Article  CAS  PubMed  Google Scholar 

  78. Canyigit M, Peynircioglu B, Hazirolan T, et al. Imaging characteristics of Takayasu arteritis. Cardiovasc Intervent Radiol. 2007;30:711–8.

    Article  PubMed  Google Scholar 

  79. Nastri MV, Baptista LP, Baroni RH, et al. Gadolinium-enhanced three-dimensional MR angiography of Takayasu arteritis. Radiographics. 2004;24:773–86.

    Article  PubMed  Google Scholar 

  80. Ozaki K, Miyayama S, Ushiogi Y, et al. Renal involvement of polyarteritis nodosa: CT and MR findings. Abdom Imaging. 2009;34:265–70.

    Article  PubMed  Google Scholar 

  81. Liu PS, Platt JF. CT angiography of the renal circulation. Radiol Clin N Am. 2010;48:347–65. viii–ix

    Article  PubMed  Google Scholar 

  82. Modrall JG, Sadjadi J. Early and late presentations of radiation arteritis. Semin Vasc Surg. 2003;16:209–14.

    Article  PubMed  Google Scholar 

  83. Spira D, Kotter I, Ernemann U, et al. Imaging of primary and secondary inflammatory diseases involving large and medium-sized vessels and their potential mimics: a multitechnique approach. AJR Am J Roentgenol. 2010;194:848–56.

    Article  PubMed  Google Scholar 

  84. Gonzalez R, Schwartz S, Sheldon CA, Fraley EE. Bilateral renal vein thrombosis in infancy and childhood. Urol Clin North Am. 1982;9:279–83.

    Article  CAS  PubMed  Google Scholar 

  85. Si-Hoe CK, Thng CH, Chee SG, Teo EK, Chng HH. Abdominal computed tomography in systemic lupus erythematosus. Clin Radiol. 1997;52:284–9.

    Article  CAS  PubMed  Google Scholar 

  86. Zhang LJ, Wu X, Yang GF, et al. Three-dimensional contrast-enhanced magnetic resonance venography for detection of renal vein thrombosis: comparison with multidetector CT venography. Acta Radiol. 2013;54:1125–31.

    Article  PubMed  Google Scholar 

  87. Smith PA, Marshall FF, Urban BA, Heath DG, Fishman EK. Three-dimensional CT stereoscopic visualization of renal masses: impact on diagnosis and patient treatment. AJR. 1997;169:1331–4.

    Article  CAS  PubMed  Google Scholar 

  88. Henseler KP, Pozniak MA, Lee FT Jr, Winter TC 3rd. Three-dimensional CT angiography of spontaneous portosystemic shunts. Radiographics. 2001;21:691–704.

    Article  CAS  PubMed  Google Scholar 

  89. Beckmann CF, Abrams HL. Idiopathic renal vein varices: incidence and significance. Radiology. 1982;143:649–52.

    Article  CAS  PubMed  Google Scholar 

  90. Rudloff U, Holmes RJ, Prem JT, et al. Mesoaortic compression of the left renal vein (nutcracker syndrome): case reports and review of the literature. Ann Vasc Surg. 2006;20:120–9.

    Article  PubMed  Google Scholar 

  91. Venkatachalam S, Bumpus K, Kapadia SR, et al. The nutcracker syndrome. Ann Vasc Surg. 2011;25:1154–64.

    Article  PubMed  Google Scholar 

  92. Lars JG, Bjorn IE, Rendon CN, et al. Incidental detection of nutcracker phenomenon on multidetector CT in an asymptomatic population: prevalence and associated findings. J Comput Assist Tomogr. 2013;37:415–8.

    Article  Google Scholar 

  93. Scheel PJ Jr, Feeley N. Retroperitoneal fibrosis: the clinical, laboratory, and radiographic presentation. Medicine (Baltimore). 2009;88:202–7.

    Article  Google Scholar 

  94. Ilica AT, Kocaoglu M, Bilici A, et al. Median arcuate ligament syndrome: multidetector computed tomography findings. J Comput Assist Tomogr. 2007;31:728–31.

    PubMed  Google Scholar 

  95. Soulen MC, Cohen DL, Itkin M, et al. Segmental arterial mediolysis: angioplasty of bilateral renal artery stenoses with 2-year imaging follow-up. J Vasc Interv Radiol. 2004;15:763–7.

    Article  PubMed  Google Scholar 

  96. Michael M, Widmer U, Wildermuth S, et al. Segmental arterial mediolysis: CTA findings at presentation and follow-up. AJR Am J Roentgenol. 2006;187:1463–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Raciti, M.V., Turpini, E., Fiorina, I., Belloni, E., Bortolotto, C., Calliada, F. (2021). Renal Vessels. In: Granata, A., Bertolotto, M. (eds) Imaging in Nephrology. Springer, Cham. https://doi.org/10.1007/978-3-030-60794-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60794-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60792-0

  • Online ISBN: 978-3-030-60794-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics