Skip to main content

Doppler Signal and Doppler Waveform Analysis

  • Chapter
  • First Online:
Imaging in Nephrology
  • 661 Accesses

Abstract

B-mode ultrasonography is used to determine the “morphology” of anatomical structures and organs; Doppler methods have the potential to offer “functional” information through blood circulation analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Taylor KJ, Holland S. Doppler US. Part 1. Basic principles, instrumentation and pitfalls. Radiology. 1990;174:297–307.

    Article  CAS  PubMed  Google Scholar 

  2. Kremkau FW. Doppler principles. Semin Roentgenol. 1992;17:6–16.

    Article  Google Scholar 

  3. Kremkau FW. Diagnostic ultrasound. In: Principles and instruments. Part II: Doppler principles. 6th ed. St. Louis: Saunders, Elseviers; 2005. p. 157–248.

    Google Scholar 

  4. Burns PN. Principles of Doppler and color flow. Radiol Med. 1993;Suppl 1:S3–S16.

    Google Scholar 

  5. Kremkau FW. Principles and pitfalls of real-time color-flow imaging. In: Bernstein EF, editor. Vascular diagnosis. 4th ed. St. Louis: Mosby-Year Book; 1993.

    Google Scholar 

  6. Rabbia C, Matricardi L. “Eco-color-Doppler vascolare” III Edizione. Torino: Edizioni Minerva; 2006.

    Google Scholar 

  7. Taylor KJW. Clinical application of carotid Doppler ultrasound. In: Taylor KJW, Burns PN, Wells PNT, editors. Clinical applications of Doppler ultrasound. 8th ed. New York: Raven Press; 1988.

    Google Scholar 

  8. Winkler P, Hemke K, Mahl M. Major pitfalls in Doppler investigations. Part II Low flow velocities and colour Doppler applications. Pediatr Radiol. 1990;20:304–10.

    Article  CAS  PubMed  Google Scholar 

  9. Mitchel DJ. Color-Doppler imaging: principles, limitations and artifacts. Radiology. 1990;177:1–10.

    Article  Google Scholar 

  10. Dauzat M, Laroche JF, De Bray JM, et al. Ultrasonographie vasculaire diagnostique. Theorie et pratique. Editions. Paris: Vigot; 1991.

    Google Scholar 

  11. Gill RW. Measurement of blood flow in ultrasound: accuracy and sources of error. Ultrasound Med Biol. 1995;11:625–41.

    Article  Google Scholar 

  12. Boote EJ. Doppler ultrasound techniques: concept of blood flow detection and flow dynamics. Radiographics. 2003;23:1315–27.

    Article  PubMed  Google Scholar 

  13. Evans DH, McDicken WN, editors. Doppler ultrasound. Physics, instrumentation and signal processing. Chapter 4: Doppler systems: a general overview. Baffins Lane, Chichester (E): Wiley and Sons Ed; 2000. p. 43–70.

    Google Scholar 

  14. Hedrick WR, Hykes DI, Starchman DE. Doppler physics and instrumentation. In: Hedrick WR, Hykes DL, Starchman DE, editors. Ultrasound physics and instrumentation. 4th ed. St. Louis: Elsevier, Mosby; 2005. p. 205–19.

    Google Scholar 

  15. Remkau FW. Principles and instrumentation. In: Merritt CRB, editor. Doppler color imaging. New York: Churchill Livingstone; 1992.

    Google Scholar 

  16. Kremkau FW. Doppler color imaging. Principles and instrumentation. Clin Diagn Ultrasound. 1992;27:7–60.

    CAS  PubMed  Google Scholar 

  17. Merrit CRB. Doppler color flow imaging. JCU. 1987;15:591–7.

    Google Scholar 

  18. Martinoli C, Pretolesi F, Crespi G, et al. Power Doppler sonography: clinical application. Eur J Radiol. 1998;27(S2):S133–40.

    Article  PubMed  Google Scholar 

  19. Rubin JM. Power Doppler. Section III: new imaging techniques. Technology. Eur Radiol. 1999;9:S318–22.

    Article  PubMed  Google Scholar 

  20. Berne RM, Levy MN, Physiology. 4th edn, 1998. Mosby Inc, Emodinamica. Ed. Italiana Casa editrice Ambrosiana 2000; pp. 422–437.

    Google Scholar 

  21. Milnor WR. Hemodynamics. Baltimore: Williams & Wilkins Ed; 1989. p. 1–408.

    Google Scholar 

  22. Batten JR, Neren RM. Model study of flow in curved and planar arterial bifurcations. Cardiovasc Res. 1982;16:178–86.

    Article  CAS  PubMed  Google Scholar 

  23. Ku DN, Giddens DP, Philips DJ, Strandness DE. Hemodynamics of the normal human carotid bifurcation: in vitro and in vivo studies. Ultrasound Med Biol. 1985;11:13–26.

    Article  CAS  PubMed  Google Scholar 

  24. Nichols WW, O’Rourke MF. McDonald’s blood flow in arteries. 3rd edn. London: Edward Arnold Ed; 1990.

    Google Scholar 

  25. Middleton WD, Foley WD, Lawson TL. Flow reversal in normal carotid bifurcation: color doppler flow imaging analysis. Radiology. 1988;167:207–15.

    Article  CAS  PubMed  Google Scholar 

  26. Burns PN. The physical principles of Doppler and spectral analysis. J Clin Ultrasound. 1987;15:567–90.

    Article  CAS  PubMed  Google Scholar 

  27. Dauzat M. Notions théoriques et thechnologiques élémentaires. Bases de l’interpretation des signaux Doppler. In: Ultrasonographie vasculaire diagnostique. Vigot, Paris: Théorie et pratique. Ed; 1991. p. 3–35.

    Google Scholar 

  28. Meola M. Color-Doppler of renovascular diseases. G Ital Nefrol. 2007;24:425–45.

    CAS  PubMed  Google Scholar 

  29. Holland CK, Clancy MJ, Taylor KJW. Volumetric flow estimation in vivo and in vitro using pulsed-Doppler ultrasound. Ultrasound Med Biol. 1996;22:591–603.

    Article  CAS  PubMed  Google Scholar 

  30. Burns PN. Measuring volume flow with Doppler ultrasound: an old nut. Ultrasound Obstet Gynecol. 1992;2:238–41.

    Article  CAS  PubMed  Google Scholar 

  31. Platt JF, Rubin JM, Ellis JH. Acute renal obstruction: evaluation with intrarenal duplex Doppler and conventional US. Radiology. 1993;186:685.

    Article  CAS  PubMed  Google Scholar 

  32. Handa N, Fukunaga R, Uehara A, et al. Echo Doppler velocimeter in the diagnosis of hypertensive patients: the renal artery Doppler technique. Ultrasound Med Biol. 1986;12:945–52.

    Article  CAS  PubMed  Google Scholar 

  33. Mostbeck GH, Kain R, Mallek R, et al. Duplex Doppler US in patients with medical renal disease. Histopathologic correlation. J Ultrasound Med. 1991;10:189–94.

    Article  CAS  PubMed  Google Scholar 

  34. Tublin ME, Bude RO, Platt JF. Review: the resistive index in renal Doppler sonography. Where do we stand? Am J Roentgenol. 2003;180:885–92.

    Article  Google Scholar 

  35. Tedesco MA, Natale F, Mocerino R, et al. Renal resistive index and cardiovascular organ damage in a large population of 36 hypertensive patients. J Hum Hypertens. 2007;21:291–6.

    Article  CAS  PubMed  Google Scholar 

  36. Kim SH, Kim VH, Choi BI, et al. Duplex Doppler US in patients with medical renal disease: resistive index vs serum creatinine. Clin Radiol. 1992;45:85–7.

    Article  CAS  PubMed  Google Scholar 

  37. Napoli V, Bartolozzi C, et al. Duplex ultrasonographic study of the renal arteries before and after renal artery stenting. Eur Radiol. 2002;12(4):796.

    Article  CAS  PubMed  Google Scholar 

  38. Webb JAW. The role of ultrasonography in the diagnosis of intrinsic renal disease. Clin Radiol. 1994;49:589–91.

    Article  CAS  PubMed  Google Scholar 

  39. Stavros AT, Parker SH, Yakes WF, et al. Segmental stenosis of the renal artery: pattern recognition of tardus and parvus abnormalities with duplex sonography. Radiology. 1992;184:487–92.

    Article  CAS  PubMed  Google Scholar 

  40. House MK, Dowling RJ, King P, et al. Using Doppler sonography to reveal renal artery stenosis: an evaluation of the optimal imaging parameters. Am J Roentgenol. 1999;173:761–5.

    Article  CAS  Google Scholar 

  41. Arbeille P, Bouin-Pineau MH, Herault S. Accuracy of the main Doppler methods for evaluating the degree of carotid stenoses (continuous wave, pulsed wave, and color Doppler). Ultrasound Med Biol. 1999;25:65–731.

    Article  CAS  PubMed  Google Scholar 

  42. Spencer MP, Reid JM. Quantification of carotid stenosis with continuous-wave (C-W) Doppler ultrasound. Stroke. 1979;10:326–30.

    Article  CAS  PubMed  Google Scholar 

  43. Grant EG, Benson CB, Moneta GL, et al. “Carotid artery stenosis: gray-scale and Doppler US diagnosis” Society of Radiologist in Ultrasound Consensus Conference. Radiology. 2003;229:340–6.

    Article  PubMed  Google Scholar 

  44. Favaretto E, Pili C, Amato A, et al. Analysis of agreement between Duplex ultrasound scanning and arteriography in patients with lower limb artery disease. J Cardiovasc Med. 2007;8:337–41.

    Article  Google Scholar 

  45. Jorgensen JJ, Stranden E, Myhre HO, et al. Flow velocity patterns of the lower limb arteries investigated by a pulsed Doppler ultrasound flowmeter. A study in healthy control subjects. J Oslo City Hosp. 1984;34:109–14.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aiani, L., Martegani, A. (2021). Doppler Signal and Doppler Waveform Analysis. In: Granata, A., Bertolotto, M. (eds) Imaging in Nephrology. Springer, Cham. https://doi.org/10.1007/978-3-030-60794-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60794-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60792-0

  • Online ISBN: 978-3-030-60794-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics