Skip to main content

Feeling the Pain of Others in Need: Studying the Effect of VR on Donation Behavior Using EEG

  • Conference paper
  • First Online:
Information Systems and Neuroscience (NeuroIS 2020)

Part of the book series: Lecture Notes in Information Systems and Organisation ((LNISO,volume 43))

Included in the following conference series:

Abstract

Virtual reality (VR) enables people to engage in experiences that reach far beyond physical reality. This has inspired humanitarian organizations (among others the United Nations) to use VR technology to raise the awareness of humanitarian crises by virtually transporting people to the regions affected. As a consequence, these immersive experiences may lead to a change in the readiness to donate. As scientific evidence for this effect is still rare we propose an experimental design which aims at investigating how immersion affects donation behavior. In particular, neurophysiological measurement (EEG) shall shed light on the influence of immersion on emotional and motivational processes. First results from a convenient sample of young men indicate that donation behavior is linked to the dynamics of frontal alpha asymmetry changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. United Nations Virtual Reality (UNVR), http://unvr.sdgactioncampaign.org/vr-films. Accessed 28 Feb 2020

  2. Schutte, N.S., Stilinović, E.J.: Facilitating empathy through virtual reality. Motiv. Emot. 41(6), 708–712 (2017). https://doi.org/10.1007/s11031-017-9641-7

    Article  Google Scholar 

  3. Shin, D.: Empathy and embodied experience in virtual environment: to what extent can virtual reality stimulate empathy and embodied experience? Comput. Human Behav. 78, 64–73 (2018). https://doi.org/10.1016/j.chb.2017.09.012

    Article  Google Scholar 

  4. Kandaurova, M., Lee (Mark), S.H.: The effects of Virtual Reality (VR) on charitable giving: the role of empathy, guilt, responsibility, and social exclusion. J. Bus. Res. 100, 571–580 (2019). https://doi.org/10.1016/j.jbusres.2018.10.027

    Article  Google Scholar 

  5. Müller-Putz, G.R., Riedl, R., Wriessnegger, S.C.: Electroencephalography (EEG) as a research tool in the information systems discipline: foundations, measurement, and applications. Commun. Assoc. Inf. Syst. 37, 911–948 (2015). https://doi.org/10.17705/1cais.03746

    Article  Google Scholar 

  6. Briesemeister, B.B., Tamm, S., Heine, A., Jacobs, A.M.: Approach the good, withdraw from the bad—a review on frontal alpha asymmetry measures in applied psychological research. Psychology 4, 261–267 (2013). https://doi.org/10.4236/psych.2013.43a039

    Article  Google Scholar 

  7. Huffmeijer, R., Alink, L.R.A., Tops, M., Bakermans-Kranenburg, M.J., Van IJzendoorn, M.H.: Asymmetric frontal brain activity and parental rejection predict altruistic behavior: moderation of oxytocin effects. Cogn. Affect. Behav. Neurosci. 12, 382–392 (2012). https://doi.org/10.3758/s13415-011-0082-6

  8. Martinez-Levy, A., Cherubino, P., Cartocci, G., Modica, E., Rossi, D., Mancini, M., Trettel, A., Babiloni, F.: Gender differences evaluation in charity campaigns perception by measuring neurophysiological signals and behavioural data. Int. J. Bioelectromagn. 19, 25–35 (2017). www.ijbem.org

  9. Witmer, B.G., Singer, M.J.: Measuring presence in virtual environments: a presence questionnaire. Presence Teleoperators Virt. Environ. 7, 225–240 (1998). https://doi.org/10.1162/105474698565686

    Article  Google Scholar 

  10. Cummings, J.J., Bailenson, J.N.: How immersive is enough? A meta-analysis of the effect of immersive technology on user presence. Media Psychol. 19, 272–309 (2016). https://doi.org/10.1080/15213269.2015.1015740

    Article  Google Scholar 

  11. Steuer, J.: Defining virtual reality: dimensions determining telepresence. J. Commun. 42, 73–93 (1992)

    Article  Google Scholar 

  12. Balan, O., Moise, G., Moldoveanu, A., Moldoveanu, F., Leordeanu, M.: Automatic adaptation of exposure intensity in VR acrophobia therapy, based on deep neural networks. In: Proceedings of the 27th European Conference on Information Systems (ECIS), pp. 1–14. Stockholm & Uppsala, Sweden (2019)

    Google Scholar 

  13. González-Franco, M., Peck, T.C., Rodríguez-Fornells, A., Slater, M.: A threat to a virtual hand elicits motor cortex activation. Exp. Brain Res. 232(3), 875–887 (2013). https://doi.org/10.1007/s00221-013-3800-1

    Article  Google Scholar 

  14. Smith, E.E., Reznik, S.J., Stewart, J.L., Allen, J.J.B.: Assessing and conceptualizing frontal eeg asymmetry: an updated primer on recording, processing, analyzing, and interpreting frontal alpha asymmetry. Int. J. Psychophysiol. 111, 98–114 (2017). https://doi.org/10.1016/j.physbeh.2017.03.040

    Article  Google Scholar 

  15. Allen, J.J.B., Coan, J.A., Nazarian, M.: Issues and assumptions on the road from raw signals to metrics of frontal EEG asymmetry in emotion. Biol. Psychol. 67, 183–218 (2004). https://doi.org/10.1016/j.biopsycho.2004.03.007

    Article  Google Scholar 

  16. Davidson, R.J., Schwartz, G.E., Saron, C., Bennett, J., Goleman, D.J.: Frontal versus parietal EEG asymmetry during positive and negative affect. Psychophysiology 16, 202–203 (1979)

    Google Scholar 

  17. Chen, D.L., Schonger, M., Wickens, C.: oTree—an open-source platform for laboratory, online, and field experiments. J. Behav. Exp. Financ. 9, 88–97 (2016). https://doi.org/10.1016/j.jbef.2015.12.001

    Article  Google Scholar 

  18. Bigdely-Shamlo, N., Mullen, T., Kothe, C., Su, K.-M., Robbins, K.A.: The PREP pipeline: standardized preprocessing for large-scale EEG analysis. Front. Neuroinform. 9, 1–20 (2015). https://doi.org/10.3389/fninf.2015.00016

    Article  Google Scholar 

  19. Mullen, T.R., Kothe, C.A.E., Chi, M., Ojeda, A., Kerth, T., Makeig, S., Jung, T.-P., Cauwenberghs, G.: Real-time neuroimaging and cognitive monitoring using wearable dry EEG. IEEE Trans. Biomed. Eng. 62, 2553–2567 (2015). https://doi.org/10.1109/TBME.2015.2481482.Real-time

    Article  Google Scholar 

  20. Mognon, A., Jovicich, J., Bruzzone, L., Buiatti, M.: ADJUST: An automatic EEG artifact detector based on the joint use of spatial and temporal features. Psychophysiology 48, 229–240 (2011). https://doi.org/10.1111/j.1469-8986.2010.01061.x

    Article  Google Scholar 

  21. Klimesch, W.: EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res. Rev. 1, 169–195 (1999)

    Article  Google Scholar 

  22. Cohen, M.X.: Analyzing Neural Time Series Data: Theory and Practice. MIT press, Cambridge (2014)

    Book  Google Scholar 

  23. Kober, S.E., Kurzmann, J., Neuper, C.: Cortical correlate of spatial presence in 2D and 3D interactive virtual reality: an EEG study. Int. J. Psychophysiol. 83, 365–374 (2012). https://doi.org/10.1016/j.ijpsycho.2011.12.003

    Article  Google Scholar 

  24. Slobounov, S.M., Ray, W., Johnson, B., Slobounov, E., Newell, K.M.: Modulation of cortical activity in 2D versus 3D virtual reality environments: an EEG study. Int. J. Psychophysiol. 95, 254–260 (2015). https://doi.org/10.1016/j.ijpsycho.2014.11.003

    Article  Google Scholar 

  25. Hertweck, S., Weber, D., Alwanni, H., Unruh, F., Fischbach, M., Latoschick, M.E., Ball, T.: Brain activity in virtual reality: assessing signal quality of high-resolution EEG while using head-mounted displays. In: IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pp. 970–971 (2019)

    Google Scholar 

  26. Piferi, R.L., Kline, K.A., Younger, J., Lawler, K.A.: An alternative approach for achieving cardiovascular baseline: viewing an aquatic video. Int. J. Psychophysiol. 37, 207–217 (2000)

    Article  Google Scholar 

  27. Honma, M., Kuroda, T., Futamura, A., Shiromaru, A., Kawamura, M.: Dysfunctional counting of mental time in Parkinson’s disease. Sci. Rep. 6 (2016). https://doi.org/10.1038/srep25421

  28. Rodrigues, J., Müller, M., Mühlberger, A., Hewig, J.: Mind the movement: frontal asymmetry stands for behavioral motivation, bilateral frontal activation for behavior. Psychophysiology 55, e12908 (2018). https://doi.org/10.1111/psyp.12908

    Article  Google Scholar 

  29. Watson, D., Clark, L.A., Tellegen, A.: Development and validation of brief measures of positive and negative affect: the PANAS scales. J. Pers. Soc. Psychol. 54, 1063–1070 (1988). https://doi.org/10.6102/zis242

    Article  Google Scholar 

  30. Carver, C.S., White, T.L.: Behavioral inhibition, behavioral activation, and affective responses to impending reward and punishment: the BIS/BAS scales. J. Pers. Soc. Psychol. 67, 319 (1994)

    Article  Google Scholar 

  31. Schuemie, M.J., van der Straaten, P., Krijn, M., van der Mast, C.A.P.G.: Research on presence in virtual reality: a survey. Cyber Psychol. Behav. 4, 183–201 (2001). https://doi.org/10.1089/109493101300117884

    Article  Google Scholar 

  32. Kim, T., Biocca, F.: Telepresence via television: two dimensions of telepresence may have different connections to memory and persuasion. J. Comput. Commun. 3, JCMC325 (2006). https://doi.org/10.1111/j.1083-6101.1997.tb00073.x

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anke Greif-Winzrieth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Greif-Winzrieth, A., Knierim, M., Peukert, C., Weinhardt, C. (2020). Feeling the Pain of Others in Need: Studying the Effect of VR on Donation Behavior Using EEG. In: Davis, F.D., Riedl, R., vom Brocke, J., Léger, PM., Randolph, A.B., Fischer, T. (eds) Information Systems and Neuroscience. NeuroIS 2020. Lecture Notes in Information Systems and Organisation, vol 43. Springer, Cham. https://doi.org/10.1007/978-3-030-60073-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60073-0_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60072-3

  • Online ISBN: 978-3-030-60073-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics