Skip to main content

The Impact of Modularization on the Understandability of Declarative Process Models: A Research Model

  • Conference paper
  • First Online:
Information Systems and Neuroscience (NeuroIS 2020)

Part of the book series: Lecture Notes in Information Systems and Organisation ((LNISO,volume 43))

Included in the following conference series:

Abstract

Process models provide a blueprint for process execution and an indispensable tool for process management. Bearing in mind their trending use for requirement elicitation, communication and improvement of business processes, the need for understandable process models becomes a must. In this paper, we propose a research model to investigate the impact of modularization on the understandability of declarative process models. We design a controlled experiment supported by eye-tracking, electroencephalography (EEG) and galvanic skin response (GSR) to appraise the understandability of hierarchical process models through measures such as comprehension accuracy, response time, attention, cognitive load and cognitive integration.

Work supported by the Innovation Fund Denmark project EcoKnow (7050-00034A).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    See https://dcrsolutions.net

References

  1. Reichert, M., Weber, B.: Enabling Flexibility in Process-Aware Information Systems. Springer, Heidelberg (2012)

    Book  Google Scholar 

  2. Andaloussi, A.A., Burattin, A., Slaats, T., Kindler, E., Weber, B.: On the declarative paradigm in hybrid business process representations: a conceptual framework and a systematic literature study. Inf. Syst. 91, 101505 (2020)

    Article  Google Scholar 

  3. Slaats, T.: Declarative and hybrid process discovery: recent advances and open challenges. J. Data Semant. 9, 1–18 (2020)

    Article  Google Scholar 

  4. Zugal, S.: Applying Cognitive Psychology for Improving the Creation, Uderstanding and Maintenance of Business Process Models (2013)

    Google Scholar 

  5. Andaloussi, A.A., Burattin, A., Slaats, T., Petersen, A.C.M., Hildebrandt, T.T., Weber, B.: Exploring the understandability of a hybrid process design artifact based on DCR graphs. In: Enterprise, Business Process and Information Systems Modeling, BPMDS 2019, pp. 1–15 (2019)

    Google Scholar 

  6. Baddeley, A.: Working memory: theories, models, and controversies. Annu. Rev. Psychol. 63, 1–29 (2012)

    Article  Google Scholar 

  7. Chen, F., Zhou, J., Wang, Y., Yu, K., Arshad, S.Z., Khawaji, A., Conway, D.: Robust Multimodal Cognitive Load Measurement, pp. 13–32. Springer, Cham (2016)

    Google Scholar 

  8. Sweller, J.: Cognitive load theory. Psychol. Learn. Motiv. 55, 37–76 (2011)

    Article  Google Scholar 

  9. 9. Pesic, M.: Constraint-based workflow management systems: shifting control to users. PhD thesis, Department of Industrial Engineering & Innovation Sciences (2008)

    Google Scholar 

  10. Parnas, D.L.: On the criteria to be used in decomposing systems into moules. Commun. ACM 15(12), 1053–1058 (1972)

    Article  Google Scholar 

  11. Shoval, P., Danoch, R., Balabam, M.: Hierarchical entity-relationship diagrams: the model, method of creation and experimental evaluation. Requirements Eng. 9(4), 217–228 (2004)

    Article  Google Scholar 

  12. Cruz-Lemus, J.A., Genero, M., Piattini. M.: Using controlled experiments for validating UML statechart diagrams measures. In: Software Process and Product Measurement, pp. 129–138. Springer, Heidelberg (2007)

    Google Scholar 

  13. Cruz-Lemus, J., Genero, M., Piattini, M.: Toval, A: Investigating the nesting level of composite states in UML statechart diagrams. Proc. QAOOSE 5, 97–108 (2005)

    Google Scholar 

  14. Johannsen, F., Leist, S.: Wand and Weber’s decomposition model in the context of business process modeling. Bus. Inf. Syst. Eng. 4(5), 271–286 (2012)

    Article  Google Scholar 

  15. Reijers, H.A., Mendling, J., Dijkman, R.M.: Human and automatic modularizations of process models to enhance their comprehension. Inf. Syst. 36(5), 881–897 (2011)

    Article  Google Scholar 

  16. Zugal, S., Soffer, P., Haisjackl, C., Pinggera, J., Reichert, M., Weber, B.: Investigating expressiveness and understandability of hierarchy in declarative business process models. Softw. Syst. Model. 14(3), 1081–1103 (2015)

    Article  Google Scholar 

  17. Pesic, M., Schonenberg, H., van der Aalst, W.M.P.: DECLARE: full support for loosely-structured processes. In: 11th IEEE International Enterprise Distributed Object Computing Conference (EDOC 2007), pp. 287–287. IEEE (2007)

    Google Scholar 

  18. Vessey, I.: Cognitive fit: a theory-based analysis of the graphs versus tables literature. Decis. Sci. 22(2), 219–240 (1991)

    Article  Google Scholar 

  19. Hildebrandt, T.T., Mukkamala, R.R.: Declarative event-based workflow as distributed dynamic condition response graphs. Electron. Proc. Theoret. Comput. Sci. 69, 59–73 (2011)

    Article  Google Scholar 

  20. Marquard, M., Shahzad, M., Slaats, T.: Web-based modelling and collaborative simulation of declarative processes. In: Business Process Management, pp. 209–225. Springer, Cham (2015)

    Google Scholar 

  21. Debois, S., Hildebrandt, T., Marquard, M., Slaats, T.: Hybrid Process Technologies in the Financial Sector: The Case of BRFkredit, pp. 397–412. Springer, Cham (2018)

    Google Scholar 

  22. Debois, S., Slaats, T.: The analysis of a real life declarative process. In: 2015 IEEE Symposium Series on Computational Intelligence, pp. 1374–1382 (2015)

    Google Scholar 

  23. Slaats, T., Mukkamala, R.R., Hildebrandt, T., Marquard, M.: Exformatics declarative case management workflows as DCR graphs. In: Business Process Mangement, pp. 339–354. Springer, Heidelberg (2013)

    Google Scholar 

  24. Ostermann, K., Giarrusso, P.G., Kastner, C., Rendel, T.: Revisiting information hiding: reflections on classical and nonclassical modularity. In: ECOOP 2011 – Object-Oriented Programming, pp. 155–178. Springer, Heidelberg (2011)

    Google Scholar 

  25. Dawkins, R.: The Blind Watchmaker, p. xiii, p. 332. WW Norton and Company, New York and London (1986). ISBN: 0-393-02216-1

    Google Scholar 

  26. Slaats, T., Schunselaar, D.M.M., Maggi, F.M., Reijers, H.A.: The semantics of hybrid process models. In: On the Move to Meaningful Internet Systems: OTM 2016 Conferences, pp. 531–551. Springer, Cham (2016)

    Google Scholar 

  27. Hildebrandt, T., Mukkamala, R.R., Slaats, T.: Nested dynamic condition response graphs. In: Proceedings of Fundamentals of Software Engineering (FSEN), April 2011

    Google Scholar 

  28. Debois, S., Hildebrandt, T., Slaats, T.: Hierarchical declarative modelling with refinement and sub-processes. In: Business Process Management, pp. 18–33. Springer, Cham (2014)

    Google Scholar 

  29. Debois, S., Hildebrandt, T.T., Slaats, T.: Replication, refinement & reachability: complexity in dynamic condition-response graphs. Acta Informatica 55(6), 489–520 (2018)

    Article  Google Scholar 

  30. Seco, J.C., Debois, S., Hildebrandt, T., Slaats, T.: RESEDA: declaring live event-driven computations as reactive semi-structured data. In: 2018 IEEE 22nd International Enterprise Distributed Object Computing Conference (EDOC), pp. 75–84, October 2018

    Google Scholar 

  31. Cant, S.N., Jeffery, D.R., Henderson-Sellers, B.: A conceptual model of cognitive complexity of elements of the programming process. Inf. Softw. Technol. 37(7), 351–362 (1995)

    Article  Google Scholar 

  32. Henderson-Sellers, B.: Object-Oriented Metrics: Measures of Complexity. Prentice-Hall, Inc., Upper Saddle River (1995)

    Google Scholar 

  33. Houy, C., Fettke, P., Loos, P.: Understanding understandability of conceptual models–what are we actually talking about? In: International Conference on Conceptual Modeling, pp. 64–77. Springer, Heidelberg (2012)

    Google Scholar 

  34. Figl, K., Laue, R.: Cognitive complexity in business process modeling. In: International Conference on Advanced Information Systems Engineering, pp. 452–466. Springer, Heidelberg (2011)

    Google Scholar 

  35. Sanchez-Gonzalez, L., Ruiz, F., Garcia, F., Cardoso, J.: Towards thresholds of control flow complexity measures for BPMN models. In: Proceedings of the 2011 ACM Symposium on Applied Computing, pp. 1445–1450 (2011)

    Google Scholar 

  36. Petrusel, R., Mendling, J.: Eye-tracking the factors of process model com- prehension tasks. In: Advanced Information Systems Engineering, pp. 224–239. Springer, Heidelberg (2013)

    Google Scholar 

  37. Bera, P., Soffer, P., Parsons, J.: Using eye tracking to expose cognitive processes in understanding conceptual models. MIS Q. 43(4), 1105–1126 (2019)

    Google Scholar 

  38. Sweller, J., Chandler, P.: Why some material is difficult to learn. Cogn. Instruct. 12(3), 185–233 (1994)

    Article  Google Scholar 

  39. Wang, W., Indulska, M., Sadiq, S., Weber, B.: Effect of linked rules on business process model understanding. Bus. Process Manage. BPM 2017, 200–215 (2017)

    Article  Google Scholar 

  40. Vessey, I., Galletta, D.: Cognitive fit: an empirical study of information acquisition. Inf. Syst. Res. 2(1), 63–84 (1991)

    Article  Google Scholar 

  41. Ritchi, H., Jans, M.J., Mendling, J., Reijers, H.: The influence of business process representation on performance of different task types. J. Inf. Syst. 34, 167–194 (2019)

    Google Scholar 

  42. Larkin, J.H., Simon, H.A.: Why a diagram is (sometimes) worth ten thousand words. Cogn. Sci. 11(1), 65–100 (1987)

    Article  Google Scholar 

  43. Dunn, C., Grabski, S.: An investigation of localization as an element of cognitive fit in accounting model representations. Decis. Sci. 32(1), 55–94 (2001)

    Article  Google Scholar 

  44. Gilmore, D.J., Green, T.R.G.: Comprehension and recall of miniature programs. Int. J. Man Mach. Stud. 21(1), 31–48 (1984)

    Article  Google Scholar 

  45. Wohlin, C., Runeson, P., Host, M., Ohlsson, M.C., Regnell, B., Wesslen, A.: Experimentation in Software Engineering. Springer, Heidelberg (2012)

    Google Scholar 

  46. Aranda, J., Ernst, N., Horkoff, J., Easterbrook, S.: A framework for empirical evaluation of model comprehensibility. In: International Workshop on Modeling in Software Engineering (MISE’07: ICSE Workshop 2007). IEEE (2007)

    Google Scholar 

  47. Hart, S.G., Staveland, L.E.: Development of NASA-TLX (Task Load Index): results of empirical and theoretical research. In: Advances in Psychology, vol. 52, pp. 139–183. Elsevier (1988)

    Google Scholar 

  48. Braithwaite, J.J., Watson, D.G., Jones, R., Rowe, M.: A guide for analysing electrodermal activity (EDA) & skin conductance responses (SCRS) for psychological experiments. Psychophysiology 49(1), 1017–1034 (2013)

    Google Scholar 

  49. Fritz, T., Begel, A., Muller, S.C., Yigit-Elliott, S., Zuger, M.: Using psycho-physiological measures to assess task difficulty in software development. In: Proceedings of the 36th International Conference on Software Engineering, pp. 402–413 (2014)

    Google Scholar 

  50. Nourbakhsh, N., Chen, F., Wang, Y., Calvo, R.A.: Detecting users’ cognitive load by galvanic skin response with affective interference. ACM Trans. Interact. Intell. Syst. (TiiS) 7(3), 1–20 (2017)

    Article  Google Scholar 

  51. Hess, E.H., Polt, J.M.: Pupil size in relation to mental activity during simple problem-solving. Science 143(3611), 1190–1192 (1964)

    Article  Google Scholar 

  52. Niedermeyer, E., da Silva, F.H.L.: Electroencephalography: basic principles, clinical applications, and related fields. Lippincott Williams & Wilkins, Philadelphia (2005)

    Google Scholar 

  53. Holmqvist, K., Nystrom, M., Andersson, R., Dewhurst, R., Jarodzka, H., van de Weijer, J.: Eye Tracking: A Comprehensive Guide to Methods and Measures. OUP Oxford, Oxford (2011)

    Google Scholar 

  54. Michael, Z., Rudiger, P., Johannes, S., Manfred, R.: Eye tracking experiments on process model comprehension: lessons learned. In Enterprise, Business-Process and Information Systems Modeling, pages 153–168. Springer, Heidelberg (2017)

    Google Scholar 

  55. Pichler, P., Weber, B., Zugal, S., Pinggera, J., Mendling, J., Reijers, H.A.: Imperative versus declarative process modeling languages: an empirical investigation. In: International Conference on Business Process Management, pp. 383–394. Springer, Heidelberg (2011)

    Google Scholar 

  56. Imotions. Galvanic skin response: the complete pocket guide (2017)

    Google Scholar 

  57. Imotions. Electroencephalography: the complete pocket guide (2019)

    Google Scholar 

  58. Muller-Putz, G.R., Riedl, R., Wriessnegger, S.C.: Electroencephalography (EEG) as a research tool in the information systems discipline: Foundations, measurement, and applications. CAIS 37, 46 (2015)

    Article  Google Scholar 

  59. Object Management Group OMG. Business Process Modeling Notation V 2.0 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amine Abbad Andaloussi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abbad Andaloussi, A., Soffer, P., Slaats, T., Burattin, A., Weber, B. (2020). The Impact of Modularization on the Understandability of Declarative Process Models: A Research Model. In: Davis, F.D., Riedl, R., vom Brocke, J., Léger, PM., Randolph, A.B., Fischer, T. (eds) Information Systems and Neuroscience. NeuroIS 2020. Lecture Notes in Information Systems and Organisation, vol 43. Springer, Cham. https://doi.org/10.1007/978-3-030-60073-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60073-0_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60072-3

  • Online ISBN: 978-3-030-60073-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics