Skip to main content

Why We Love Blue Hues on Websites: A fNIRS Investigation of Color and Its Impact on the Neural Processing of Ecommerce Websites

  • Conference paper
  • First Online:
Information Systems and Neuroscience (NeuroIS 2020)

Part of the book series: Lecture Notes in Information Systems and Organisation ((LNISO,volume 43))

Included in the following conference series:

Abstract

Blue of all colors seems to be generally preferred by humans and animals. Consequently, the use of this color in ecommerce context has several positive effects such as increased trustworthiness and aesthetic ratings. These effects are, in this study, hypothesized to be caused by specific neural processes in the prefrontal cortex of human decision makers. Consequently, this study tackles the research question whether there is a distinct neural activation pattern for blue websites that helps to explain why blue is often most favored. To investigate this, one website is designed and manipulated in color to which user reactions are measured by employing functional near-infrared spectroscopy (fNIRS). The results of this study show that blue colored websites seem to require generally less processing power related to cognitive processing while revealing increases in brain structures related to processing pleasant and aesthetic stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Heller, E.: Wie Farben auf Gefühl und Verstand wirken. Droemer, München (2000)

    Google Scholar 

  2. Granger, G.W.: Objectivity of colour preferences. Nature 170, 778–780 (1952)

    Article  Google Scholar 

  3. McManus, I.C., Jones, A.L., Cottrell, J.: The aesthetics of colour. Perception 10, 651–666 (1981)

    Article  Google Scholar 

  4. Herbert, P.: The Colors Used by the Ten Most Popular Sites. https://paulhebertdesigns.com/web_colors/

  5. Bäumer, T., Leinberger, S., Beck, K., Kolb, F., Pfeifer, A.: Wahl ohne Qual – Wie Farben unsere Entscheidungen färben. Wirtschaftspsychologie 2019, 108–118 (2019)

    Google Scholar 

  6. Bonnardel, N., Piolat, A., Le Bigot, L.: The impact of colour on Website appeal and users’ cognitive processes. Displays 32, 69–80 (2011)

    Article  Google Scholar 

  7. Chang, W., Lin, H.: The impact of color traits on corporate branding. Afr. J. Bus. Manag. 4, 3344–3355 (2010)

    Google Scholar 

  8. Becker, S.A.: An exploratory study on Web usability and the internationalization of US e-businesses. J. Electron. Commer. Res. 3, 265–278 (2002)

    Google Scholar 

  9. Singh, S.: Impact of color on marketing. Manag. Decis. 44, 783–789 (2006)

    Article  Google Scholar 

  10. Cyr, D., Head, M., Larios, H.: Colour appeal in website design within and across cultures: a multi-method evaluation. Int. J. Hum. Comput. Stud. 68, 1–21 (2010)

    Article  Google Scholar 

  11. Seckler, M., Opwis, K., Tuch, A.N.: Linking objective design factors with subjective aesthetics: an experimental study on how structure and color of websites affect the facets of users’ visual aesthetic perception. Comput. Human Behav. 49, 375–389 (2015)

    Article  Google Scholar 

  12. Fortmann-Roe, S.: Effects of hue, saturation, and brightness on color preference in social networks: gender-based color preference on the social networking site Twitter. Color Res. Appl. 38, 196–202 (2013)

    Article  Google Scholar 

  13. Palmer, S.E., Schloss, K.B.: An ecological valence theory of human color preference. Proc. Natl. Acad. Sci. U. S. A. 107, 8877–8882 (2010)

    Article  Google Scholar 

  14. Liu, X., Hong, K.S.: Detection of primary RGB colors projected on a screen using fNIRS. J. Innov. Opt. Health Sci. 10, 1–11 (2017)

    Google Scholar 

  15. Zeki, S., Marini, L.: Three cortical stages of colour processing in the human brain. Brain 121, 1669–1685 (1998)

    Article  Google Scholar 

  16. Young, T.: The bakerian lecture: on the theory of light and colours. Philos. Trans. R. Soc. Lond. 92, 12–48 (1802)

    Google Scholar 

  17. Grassmann, H.: Zur Theorie der Farbenmischung. Ann. der Phys. und Chemie. 165, 69–84 (1853)

    Article  Google Scholar 

  18. MacDonald, L.W.: Using color effectively in computer graphics. IEEE Comput. Graph. Appl. 20–35 (1999)

    Google Scholar 

  19. Hunt, R.W.G.: Measuring Colour. Fountain Press, UK (1998)

    Google Scholar 

  20. Newton, I.: Opticks (1704)

    Google Scholar 

  21. von Goethe, J.W.: Zur Farbenlehre. Tübingen (1810)

    Google Scholar 

  22. Chevreul, M.E., Martel, C.: The Principles of Harmony and Contrast of Colours, and Their Applications to the Arts. Longman, Brown, Green, and Longmans, Harlow (1855)

    Google Scholar 

  23. Munsell, A.H.: a pigment color system and notation. Am. J. Psychol. 23, 236 (1912)

    Article  Google Scholar 

  24. Gorn, G.J., Chattopadhyay, A., Sengupta, J., Tripathi, S.: Waiting for the web: how screen color affects time perception. J. Mark. Res. 41, 215–225 (2004)

    Article  Google Scholar 

  25. Elliot, A.J.: Color and psychological functioning: a review of theoretical and empirical work. Front. Psychol. 6, 1–8 (2015)

    Article  Google Scholar 

  26. Pridmore, R.W.: Chromatic induction: opponent color or complementary color process? Color Res. Appl. 33, 77–81 (2008)

    Article  Google Scholar 

  27. Patil, D.: Coloring consumer’s psychology using different shades the role of perception of colors by consumers in consumer decision making process: a micro study of select departmental stores in Mumbai city, India. J. Bus. Retail Manag. Res. 7, 60–74 (2012)

    Google Scholar 

  28. Pandir, M., Knight, J.: Homepage aesthetics: the search for preference factors and the challenges of subjectivity. Interact. Comput. 18, 1351–1370 (2006)

    Article  Google Scholar 

  29. Tuch, A.N., Bargas-Avila, J.A., Opwis, K., Wilhelm, F.H.: Visual complexity of websites: effects on users’ experience, physiology, performance, and memory. Int. J. Hum. Comput. Stud. 67, 703–715 (2009)

    Article  Google Scholar 

  30. Zheng, X.S., Chakraborty, I., Lin, J.J.W., Rauschenberger, R.: Correlating low-level image statistics with users’ rapid aesthetic and affective judgments of web pages. In: Conference on Human Factors in Computing Systems – Proceedings, pp. 1–10 (2009)

    Google Scholar 

  31. Abegaz, T., Dillon, E., Gilbert, J.E.: Exploring affective reaction during user interaction with colors and shapes. Procedia Manuf. 3, 5253–5260 (2015)

    Article  Google Scholar 

  32. Soldat, A.S., Sinclair, R.C., Mark, M.M.: Color as an environmental processing cue: external affective cues can directly affect processing strategy without affecting mood. Soc. Cogn. 15, 55–71 (1997)

    Article  Google Scholar 

  33. Engel, S., Zhang, X., Wandell, B.: Colour tuning in human visual cortex measured with functional magnetic resonance imaging. Nature 388, 68–71 (1997)

    Article  Google Scholar 

  34. Nathans, J., Thomas, D., Hogness, D.S.: Molecular genetics of human color vision: the genes encodiung blue, green, and red pigments. Science (80-.) 232, 193–202 (1986)

    Google Scholar 

  35. Holzmann, D.C.: What’s in a color? The unique human health effects of blue light. Environ. Health Perspect. 118, A22–A27 (2010)

    Article  Google Scholar 

  36. Mehta, R., Zhu, R.J.: Blue or red? Exploring the effect of color on cognitive task performances. Science (80-.) 323, 1226–1229 (2009)

    Google Scholar 

  37. Anllo-Vento, L., Luck, S.J., Hillyard, S.A.: Spatio-temporal dynamics of attention to color: evidence from human electrophysiology. Hum. Brain Mapp. 6, 216–238 (1998)

    Article  Google Scholar 

  38. Valdez, P., Mehrabian, A.: Effects of color on emotions. J. Exp. Psychol. Gen. 123, 394–409 (1994)

    Article  Google Scholar 

  39. Labrecque, L.I., Milne, G.R.: Exciting red and competent blue: the importance of color in marketing. J. Acad. Mark. Sci. 40, 711–727 (2012)

    Article  Google Scholar 

  40. Moshagen, M., Thielsch, M.T.: Facets of visual aesthetics. Int. J. Hum. Comput. Stud. 68, 689–709 (2010)

    Article  Google Scholar 

  41. Moshagen, M., Thielsch, M.T.: VisAWI Manual (Visual Aesthetics of Websites Inventory) (2013)

    Google Scholar 

  42. Krampe, C., Gier, N., Kenning, P.: The application of mobile fNIRS in marketing research – detecting the ‘first-choice-brand’ effect. Front. Hum. Neurosci. 12, 433 (2018)

    Article  Google Scholar 

  43. Kim, H.Y., Seo, K., Jeon, H.J., Lee, U., Lee, H.: Application of functional near-infrared spectroscopy to the study of brain function in humans and animal models. Mol. Cells 40, 523–532 (2017)

    Article  Google Scholar 

  44. Pollmann, K., Vukelić, M., Birbaumer, N., Peissner, M., Bauer, W., Kim, S.: fNIRS as a method to capture the emotional user experience: a feasibility study. In: Kurosu, M. (ed.) HCI 2016, Part III. LCNS, vol. 9733, pp. 37–47. Springer, Cham (2016)

    Google Scholar 

  45. Hill, A.P., Bohil, C.J.: Applications of optical neuroimaging in usability research. Ergon. Des. 24, 4–9 (2016)

    Google Scholar 

  46. Irani, F., Platek, S.M., Bunce, S., Ruocco, A.C., Chute, D.: Functional near infrared spectroscopy (fNIRS): an emerging neuroimaging technology with important applications for the study of brain disorders. Clin. Neuropsychol. 21, 9–37 (2007)

    Article  Google Scholar 

  47. Huppert, T.J., Hoge, R.D., Diamond, S.G., Franceschini, M.A., Boas, D.A.: A temporal comparison of BOLD, ASL, and NIRS hemodynamic responses to motor stimuli in adult humans. Neuroimage 29, 368–382 (2006)

    Article  Google Scholar 

  48. Strangman, G., Culver, J.P., Thompson, J.H., Boas, D.A.: A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation. Neuroimage 17, 719–731 (2002)

    Article  Google Scholar 

  49. Ferrari, M., Quaresima, V.: A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. Neuroimage 63, 921–935 (2012)

    Article  Google Scholar 

  50. Funane, T., Atsumori, H., Katura, T., Obata, A.N., Sato, H., Tanikawa, Y., Okada, E., Kiguchi, M.: Quantitative evaluation of deep and shallow tissue layers’ contribution to fNIRS signal using multi-distance optodes and independent component analysis. Neuroimage 85, 150–165 (2014)

    Article  Google Scholar 

  51. Brigadoi, S., Ceccherini, L., Cutini, S., Scarpa, F., Scatturin, P., Selb, J., Gagnon, L., Boas, D.A., Cooper, R.J.: Motion artifacts in functional near-infrared spectroscopy: a comparison of motion correction techniques applied to real cognitive data. Neuroimage 85, 181–191 (2014)

    Article  Google Scholar 

  52. Leff, D.R., Orihuela-Espina, F., Elwell, C.E., Athanasiou, T., Delpy, D.T., Darzi, A.W., Yang, G.Z.: Assessment of the cerebral cortex during motor task behaviours in adults: a systematic review of functional near infrared spectroscopy (fNIRS) studies. Neuroimage 54, 2922–2936 (2011)

    Article  Google Scholar 

  53. Scholkmann, F., Kleiser, S., Metz, A.J., Zimmermann, R., Mata Pavia, J., Wolf, U., Wolf, M.: A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology. Neuroimage 85, 6–27 (2014)

    Article  Google Scholar 

  54. Gefen, D., Ayaz, H., Onaral, B.: Applying functional near infrared (fNIR) spectroscopy to enhance MIS research. AIS Trans. Hum. Comput. Interact. 6, 55–73 (2014)

    Article  Google Scholar 

  55. Cui, X., Baker, J.M., Liu, N., Reiss, A.L.: Sensitivity of fNIRS measurement to head motion: an applied use of smartphones in the lab. J. Neurosci. Methods 245, 37–43 (2015)

    Article  Google Scholar 

  56. Zhao, H., Cooper, R.J.: Review of recent progress toward a fiberless, whole-scalp diffuse optical tomography system. Neurophotonics 5(1), 011012 (2017)

    Article  Google Scholar 

  57. Tak, S., Ye, J.C.: Statistical analysis of fNIRS data: a comprehensive review. Neuroimage. 85, 72–91 (2014)

    Article  Google Scholar 

  58. Tachtsidis, I., Scholkmann, F.: False positives and false negatives in functional near-infrared spectroscopy: issues, challenges, and the way forward. Neurophotonics 3, 039801 (2016)

    Article  Google Scholar 

  59. Brigadoi, S., Cooper, R.J.: How short is short? Optimum source–detector distance for short-separation channels in functional near-infrared spectroscopy. Neurophotonics 2, 1–9 (2015)

    Article  Google Scholar 

  60. Goodwin, J.R., Gaudet, C.R., Berger, A.J.: Short-channel functional near-infrared spectroscopy regressions improve when source-detector separation is reduced. Neurophotonics 1, 015002 (2014)

    Article  Google Scholar 

  61. Santosa, H., Zhai, X., Fishburn, F., Huppert, T.: The NIRS Brain AnalyzIR toolbox. Algorithms 11, 73 (2018)

    Article  Google Scholar 

  62. Zhang, D., Zhou, Y., Hou, X., Cui, Y., Zhou, C.: Discrimination of emotional prosodies in human neonates: A pilot fNIRS study. Neurosci. Lett. 658, 62–66 (2017)

    Article  Google Scholar 

  63. Pinti, P., Scholkmann, F., Hamilton, A., Burgess, P., Tachtsidis, I.: Current status and issues regarding pre-processing of fNIRS neuroimaging data: an investigation of diverse signal filtering methods within a general linear model framework. Front. Hum. Neurosci. 12, 1–21 (2019)

    Article  Google Scholar 

  64. Saager, R.B., Berger, A.J.: Direct characterization and removal of interfering absorption trends in two-layer turbid media. J. Opt. Soc. Am. A. 22, 1874 (2005)

    Article  Google Scholar 

  65. Yücel, M.A., Selb, J., Aasted, C.M., Lin, P.Y., Borsook, D., Becerra, L., Boas, D.A.: Mayer waves reduce the accuracy of estimated hemodynamic response functions in functional near-infrared spectroscopy. Biomed. Opt. Express 7, 3078 (2016)

    Article  Google Scholar 

  66. Delpy, D.T., Cope, M., van der Zee, P., Arridge, S., Wray, S., Wyatt, J.: Estimation of optical pathlength through tissue from direct time of flight measurement. Phys. Med. Biol. 33, 1433–1442 (1988)

    Article  Google Scholar 

  67. Kocsis, L., Herman, P., Eke, A.: The modified Beer-Lambert law revisited. Phys. Med. Biol. 51, N91–N98 (2006)

    Article  Google Scholar 

  68. Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B. 57, 289–300 (1995)

    Google Scholar 

  69. Bird, C.M., Berens, S.C., Horner, A.J., Franklin, A.: Categorical encoding of color in the brain. Proc. Natl. Acad. Sci. U. S. A. 111, 4590–4595 (2014)

    Article  Google Scholar 

  70. Siok, W.T., Kay, P., Wang, W.S.Y., Chan, A.H.D., Chen, L., Luke, K.K., Tan, L.H.: Language regions of brain are operative in color perception. Proc. Natl. Acad. Sci. U. S. A. 106, 8140–8145 (2009)

    Article  Google Scholar 

  71. Cela-Conde, C.J., Marty, G., Maestú, F., Ortiz, T., Munar, E., Fernández, A., Roca, M., Rosselló, J., Quesney, F.: Activation of the prefrontal cortex in the human visual aesthetic perception. Proc. Natl. Acad. Sci. U. S. A. 101, 6321–6325 (2004)

    Article  Google Scholar 

  72. Wang, M.Y., Lu, F.M., Hu, Z., Zhang, J., Yuan, Z.: Optical mapping of prefrontal brain connectivity and activation during emotion anticipation. Behav. Brain Res. 350, 122–128 (2018)

    Article  Google Scholar 

  73. Taren, A.A., Venkatraman, V., Huettel, S.A.: A parallel functional topography between medial and lateral prefrontal cortex: evidence and implications for cognitive control. J. Neurosci. 31, 5026–5031 (2011)

    Article  Google Scholar 

  74. Hutcherson, C.A., Plassmann, H., Gross, J.J., Rangel, A.: Cognitive regulation during decision making shifts behavioral control between ventromedial and dorsolateral prefrontal value systems. J. Neurosci. 32, 13543–13554 (2012)

    Article  Google Scholar 

  75. Chen, M.Y., Jimura, K., White, C.N., Todd Maddox, W., Poldrack, R.A.: Multiple brain networks contribute to the acquisition of bias in perceptual decision-making. Front. Neurosci. 9, 1–13 (2015)

    Google Scholar 

  76. Greening, S.G., Finger, E.C., Mitchell, D.G.V.: Parsing decision making processes in prefrontal cortex: response inhibition, overcoming learned avoidance, and reversal learning. Neuroimage 54, 1432–1441 (2011)

    Article  Google Scholar 

  77. Mitchell, D.G.V., Luo, Q., Avny, S.B., Kasprzycki, T., Gupta, K., Chen, G., Finger, E.C., Blair, R.J.R.: Adapting to dynamic stimulus-response values: differential contributions of inferior frontal, dorsomedial, and dorsolateral regions of prefrontal cortex to decision making. J. Neurosci. 29, 10827–10834 (2009)

    Article  Google Scholar 

  78. Heekeren, H.R., Marrett, S., Ruff, D.A., Bandettini, P.A., Ungerleider, L.G.: Involvement of human left dorsolateral prefrontal cortex in perceptual decision making is independent of response modality. Proc. Natl. Acad. Sci. U. S. A. 103, 10023–10028 (2006)

    Article  Google Scholar 

  79. Sanfey, A.G., Rilling, J.K., Aronson, J.A., Nystrom, L.E., Cohen, J.D.: The neural basis of economic decision-making in the Ultimatum Game. Science (80-.) 300, 1755–1758 (2003)

    Google Scholar 

  80. Deppe, M., Schwindt, W., Kugel, H., Plaßmann, H., Kenning, P.: Nonlinear responses within the medial prefrontal cortex reveal when specific implicit information influences economic decision making. J. Neuroimaging 15, 171–182 (2005)

    Article  Google Scholar 

  81. Gilron, R., Gutchess, A.H.: Remembering first impressions: Effects of intentionality and diagnosticity on subsequent memory. Cogn. Affect. Behav. Neurosci. 12, 85–98 (2012)

    Article  Google Scholar 

  82. Dolcos, F., Iordan, A.D., Dolcos, S.: Neural correlates of emotion - cognition interactions: a review of evidence from brain imaging investigations. J. Cogn. Psychol. 23, 669–694 (2011)

    Article  Google Scholar 

  83. Ellard, K.K., Barlow, D.H., Whitfield-Gabrieli, S., Gabrieli, J.D.E., Deckersbach, T.: Neural correlates of emotion acceptance vs worry or suppression in generalized anxiety disorder. Soc. Cogn. Affect. Neurosci. 12, 1009–1021 (2017)

    Article  Google Scholar 

  84. Britton, J.C., Phan, K.L., Taylor, S.F., Welsh, R.C., Berridge, K.C., Liberzon, I.: Neural correlates of social and nonsocial emotions: An fMRI study. Neuroimage 31, 397–409 (2006)

    Article  Google Scholar 

  85. Etkin, A., Egner, T., Kalisch, R.: Emotional processing in anterior cingulate and medial prefrontal cortex. Trends Cogn. Sci. 15, 85–93 (2011)

    Article  Google Scholar 

  86. Cela-Conde, C.J., Garcia-Prieto, J., Ramasco, J.J., Mirasso, C.R., Bajo, R., Munar, E., Flexas, A., del-Pozo, F., Maestu, F.: Dynamics of brain networks in the aesthetic appreciation. Proc. Natl. Acad. Sci. 110, 10454–10461 (2013)

    Google Scholar 

  87. Koenigs, M., Tranel, D.: Irrational economic decision-making after ventromedial prefrontal damage: evidence from the ultimatum game. J. Neurosci. 27, 951–956 (2007)

    Article  Google Scholar 

  88. Naqvi, N., Shiv, B., Bechara, A.: The role of emotion in decision making: a cognitive neuroscience perspective. Curr. Dir. Psychol. Sci. 15, 260–264 (2006)

    Article  Google Scholar 

  89. Delli Pizzi, S., Chiacchiaretta, P., Mantini, D., Bubbico, G., Ferretti, A., Edden, R.A., Di Giulio, C., Onofrj, M., Bonanni, L.: Functional and neurochemical interactions within the amygdala–medial prefrontal cortex circuit and their relevance to emotional processing. Brain Struct. Funct. 222, 1267–1279 (2017)

    Article  Google Scholar 

  90. Buhle, J.T., Silvers, J.A., Wage, T.D., Lopez, R., Onyemekwu, C., Kober, H., Webe, J., Ochsner, K.N.: Cognitive reappraisal of emotion: a meta-analysis of human neuroimaging studies. Cereb. Cortex. 24, 2981–2990 (2014)

    Article  Google Scholar 

  91. Motzkin, J.C., Philippi, C.L., Wolf, R.C., Baskaya, M.K., Koenigs, M.: Ventromedial prefrontal cortex lesions alter neural and physiological correlates of anticipation. J. Neurosci. 34, 10430–10437 (2014)

    Article  Google Scholar 

  92. Doi, H., Nishitani, S., Shinohara, K.: NIRS as a tool for assaying emotional function in the prefrontal cortex. Front. Hum. Neurosci. 7, 1–6 (2013)

    Article  Google Scholar 

  93. Plassmann, H., O’Doherty, J., Rangel, A.: Orbitofrontal cortex encodes willingness to pay in everyday economic transactions. J. Neurosci. 27, 9984–9988 (2007)

    Article  Google Scholar 

  94. Brown, S., Gao, X., Tisdelle, L., Eickhoff, S.B., Liotti, M.: Naturalizing aesthetics: brain areas for aesthetic appraisal across sensory modalities. Neuroimage 58, 250–258 (2011)

    Article  Google Scholar 

  95. Snyder, H.R., Banich, M.T., Munakata, Y.: Choosing our words: retrieval and selection processes recruit shared neural substrates in left ventrolateral prefrontal cortex. J. Cogn. Neurosci. 23, 3470–3482 (2011)

    Article  Google Scholar 

  96. Sakagami, M., Pan, X.: Functional role of the ventrolateral prefrontal cortex in decision making. Curr. Opin. Neurobiol. 17, 228–233 (2007)

    Article  Google Scholar 

  97. Wager, T.D., Davidson, M.L., Hughes, B.L., Lindquist, M.A., Ochsner, K.N.: Prefrontal-subcortical pathways mediating successful emotion regulation. Neuron 59, 1037–1050 (2008)

    Article  Google Scholar 

  98. Leung, H.C., Cai, W.: Common and differential ventrolateral prefrontal activity during inhibition of hand and eye movements. J. Neurosci. 27, 9893–9900 (2007)

    Article  Google Scholar 

  99. Heinen, S.J., Rowland, J., Lee, B.T., Wade, A.R.: An oculomotor decision process revealed by functional magnetic resonance imaging. J. Neurosci. 26, 13515–13522 (2006)

    Article  Google Scholar 

  100. Hoshi, Y., Huang, J., Kohri, S., Iguchi, Y., Naya, M., Okamoto, T., Ono, S.: Recognition of human emotions from cerebral blood flow changes in the frontal region: a study with event-related near-infrared spectroscopy. J. Neuroimaging 21, 94–101 (2011)

    Article  Google Scholar 

  101. Müller-Putz, G.R., Riedl, R., Wriessnegger, S.C.: Electroencephalography (EEG) as a research tool in the information systems discipline: foundations, measurement, and applications. Commun. Assoc. Inf. Syst. 37, 911–948 (2015)

    Google Scholar 

  102. Darley, W.K., Smith, R.E.: Gender differences in information processing strategies: an empirical test of the selectivity model in advertising response. J. Advert. 24, 41–56 (1995)

    Article  Google Scholar 

  103. Putrevu, S.: Exploring the origins and information processing differences between men and women: implications for advertisers. Acad. Mark. Sci. Rev. 10, 1–16 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anika Nissen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nissen, A. (2020). Why We Love Blue Hues on Websites: A fNIRS Investigation of Color and Its Impact on the Neural Processing of Ecommerce Websites. In: Davis, F.D., Riedl, R., vom Brocke, J., Léger, PM., Randolph, A.B., Fischer, T. (eds) Information Systems and Neuroscience. NeuroIS 2020. Lecture Notes in Information Systems and Organisation, vol 43. Springer, Cham. https://doi.org/10.1007/978-3-030-60073-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60073-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60072-3

  • Online ISBN: 978-3-030-60073-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics