Skip to main content

Spatiotemporal Attention Autoencoder (STAAE) for ADHD Classification

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12267))

Abstract

It has been of great interest in the neuroimaging community to model spatiotemporal brain function and disorders based on resting state functional magnetic resonance imaging (rfMRI). A variety of spatiotemporal methods have been proposed for rfMRI so far, including deep learning models such as convolution networks (CNN) and recurrent networks (RNN). However, the dominant models fail to capture the long-distance dependency (LDD) due to their sequential nature, which becomes critical at longer sequence lengths due to memory limit. Inspired by human brain’s extraordinary ability of long-term memory and attention, the attention mechanism is designed for machine translation to draw global dependencies and achieved state-of-the-art. In this paper, we propose a spatiotemporal attention autoencoder (STAAE) to discover global features that address LDDs in rfMRI. STAAE encodes the information throughout the rfMRI sequence and reveals resting state networks (RSNs) that characterize spatial and temporal properties of the data. Considering that the rfMRI is measured without external tasks, an unsupervised classification framework is developed based on the connectome generated with STAAE. This framework has been evaluated on 281 children with ADHD and 266 normal control children from 4 sites of ADHD200 datasets. The proposed STAAE reveals the global functional interaction in the brain and achieves a state-of-the-art classification accuracy from 59.5% to 77.2% on multiple sites. It is evident that the proposed attention-based model provides a novel approach towards better understanding of human brain.

Q. Dong and N. Qiang—Equally contribution to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smith, S.M., et al.: Correspondence of the brain’s functional architecture during activation and rest. Proc. Natl. Acad. Sci. 106(31), 13040–13045 (2009)

    Article  Google Scholar 

  2. Kanwisher, N.: Functional specificity in the human brain: a window into the functional architecture of the mind. Proc. Natl. Acad. Sci. 107(25), 11163–11170 (2010)

    Article  Google Scholar 

  3. Harris, K.D., et al.: Cortical connectivity and sensory coding. Nature 503(7474), 51 (2013)

    Article  Google Scholar 

  4. Pessoa, L.: Understanding brain networks and brain organization. Phys. Life Rev. 11(3), 400–435 (2014)

    Article  Google Scholar 

  5. Lv, J., et al.: Task fMRI data analysis based on supervised stochastic coordinate coding. Med. Image Anal. 38, 1–16 (2017)

    Article  Google Scholar 

  6. McKeown, M.J.: Detection of consistently task-related activations in fMRI data with hybrid independent component analysis. NeuroImage 11(1), 24–35 (2000)

    Article  Google Scholar 

  7. Calhoun, V.D., et al.: A method for making group inferences from functional MRI data using independent component analysis. Hum. Brain Mapp. 14(3), 140–151 (2001)

    Article  Google Scholar 

  8. Beckmann, C.F., et al.: Investigations into resting-state connectivity using independent component analysis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360(1457), 1001–1013 (2005)

    Article  Google Scholar 

  9. Calhoun, V.D., et al.: Multisubject independent component analysis of fMRI: a decade of intrinsic networks, default mode, and neurodiagnostic discovery. IEEE Rev. Biomed. Eng. 5, 60–73 (2012)

    Article  Google Scholar 

  10. Lv, J., et al.: Sparse representation of whole-brain fMRI signals for identification of functional networks. Med. Image Anal. 20(1), 112–134 (2015)

    Article  MathSciNet  Google Scholar 

  11. Jiang, X., et al.: Sparse representation of HCP grayordinate data reveals novel functional architecture of cerebral cortex. Hum. Brain Mapp. 36(12), 5301–5319 (2015)

    Article  Google Scholar 

  12. Ge, F., et al.: Deriving ADHD biomarkers with sparse coding based network analysis. In: 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI). IEEE (2015)

    Google Scholar 

  13. Li, X., et al.: Multiple-demand system identification and characterization via sparse representations of fMRI data. In: 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI). IEEE (2016)

    Google Scholar 

  14. Ge, F., et al.: Exploring intrinsic networks and their interactions using group wise temporal sparse coding. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018). IEEE (2018)

    Google Scholar 

  15. Huang, H., et al.: Modeling task fMRI data via mixture of deep expert networks. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018). IEEE (2018)

    Google Scholar 

  16. Huang, H., et al.: Modeling task fMRI data via deep convolutional autoencoder. IEEE Trans. Med. Imaging 37(7), 1551–1561 (2018)

    Article  Google Scholar 

  17. Zhao, Y., et al.: Automatic recognition of fMRI-derived functional networks using 3-D convolutional neural networks. IEEE Trans. Biomed. Eng. 65(9), 1975–1984 (2018)

    Article  Google Scholar 

  18. Li, Q., et al.: Simultaneous spatial-temporal decomposition of connectome-scale brain networks by deep sparse recurrent auto-encoders. In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 579–591. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20351-1_45

    Chapter  Google Scholar 

  19. Sak, H., et al.: Long short-term memory recurrent neural network architectures for large scale acoustic modeling. In: Fifteenth Annual Conference of the International Speech Communication Association (2014)

    Google Scholar 

  20. Wang, L., et al.: Decoding dynamic auditory attention during naturalistic experience. In: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017). IEEE (2017)

    Google Scholar 

  21. Wang, H., et al.: Recognizing brain states using deep sparse recurrent neural network. IEEE Trans. Med. Imaging 38, 1058–1068 (2018)

    Article  Google Scholar 

  22. Piñango, M.M., et al.: The localization of long-distance dependency components: integrating the focal-lesion and neuroimaging record. Front. Psychol. 7, 1434 (2016)

    Article  Google Scholar 

  23. Bahdanau, D., et al.: Neural machine translation by jointly learning to align and translate (2014)

    Google Scholar 

  24. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems (2017)

    Google Scholar 

  25. Riaz, A., et al.: Fusion of fMRI and non-imaging data for ADHD classification. Comput. Med. Imaging Graph. 65, 115–128 (2018)

    Article  Google Scholar 

  26. Itani, S., et al.: A multi-level classification framework for multi-site medical data: application to the ADHD-200 collection. Expert Syst. Appl. 91, 36–45 (2018)

    Article  Google Scholar 

  27. Bellec, P., et al.: The neuro bureau ADHD-200 preprocessed repository. Neuroimage 144, 275–286 (2017)

    Article  Google Scholar 

  28. dos Santos Siqueira, A., et al.: Abnormal functional resting-state networks in ADHD: graph theory and pattern recognition analysis of fMRI data. Biomed. Res. Int. 2014, 380531 (2014)

    Article  Google Scholar 

  29. Dey, S., et al.: Attributed graph distance measure for automatic detection of attention deficit hyperactive disordered subjects. Front. Neural Circuits 8, 64 (2014)

    Article  Google Scholar 

  30. Nuñez-Garcia, M., Simpraga, S., Jurado, M.A., Garolera, M., Pueyo, R., Igual, L.: FADR: functional-anatomical discriminative regions for rest fMRI characterization. In: Zhou, L., Wang, L., Wang, Q., Shi, Y. (eds.) MLMI 2015. LNCS, vol. 9352, pp. 61–68. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24888-2_8

    Chapter  Google Scholar 

  31. Abraham, A., et al.: Machine learning for neuroimaging with scikit-learn. Front. Neuroinform. 8, 14 (2014)

    Article  Google Scholar 

  32. Cui, Y., et al.: Identifying brain networks of multiple time scales via deep recurrent neural network. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11072, pp. 284–292. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00931-1_33

    Chapter  Google Scholar 

  33. Pessoa, L.: Beyond brain regions: network perspective of cognition–emotion interactions. Behav. Brain Sci. 35(3), 158–159 (2012)

    Article  Google Scholar 

  34. Lv, J., et al.: Holistic atlases of functional networks and interactions reveal reciprocal organizational architecture of cortical function. IEEE Trans. Biomed. Eng. 62(4), 1120–1131 (2015)

    Article  MathSciNet  Google Scholar 

  35. Devlin, J., et al.: Bert: pre-training of deep bidirectional transformers for language understanding (2018)

    Google Scholar 

  36. Duncan, J.: The multiple-demand (MD) system of the primate brain: mental programs for intelligent behaviour. Trends Cogn. Sci. 14(4), 172–179 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quanzheng Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dong, Q., Qiang, N., Lv, J., Li, X., Liu, T., Li, Q. (2020). Spatiotemporal Attention Autoencoder (STAAE) for ADHD Classification. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12267. Springer, Cham. https://doi.org/10.1007/978-3-030-59728-3_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59728-3_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59727-6

  • Online ISBN: 978-3-030-59728-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics