Skip to main content

A Deep-Generative Hybrid Model to Integrate Multimodal and Dynamic Connectivity for Predicting Spectrum-Level Deficits in Autism

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Abstract

We propose an integrated deep-generative framework, that jointly models complementary information from resting-state functional MRI (rs-fMRI) connectivity and diffusion tensor imaging (DTI) tractography to extract predictive biomarkers of a disease. The generative part of our framework is a structurally-regularized Dynamic Dictionary Learning (sr-DDL) model that decomposes the dynamic rs-fMRI correlation matrices into a collection of shared basis networks and time varying patient-specific loadings. This matrix factorization is guided by the DTI tractography matrices to learn anatomically informed connectivity profiles. The deep part of our framework is an LSTM-ANN block, which models the temporal evolution of the patient sr-DDL loadings to predict multidimensional clinical severity. Our coupled optimization procedure collectively estimates the basis networks, the patient-specific dynamic loadings, and the neural network weights. We validate our framework on a multi-score prediction task in 57 patients diagnosed with Autism Spectrum Disorder (ASD). Our hybrid model outperforms state-of-the-art baselines in a five-fold cross validated setting and extracts interpretable multimodal neural signatures of brain dysfunction in ASD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Afonso, M.V., Bioucas-Dias, J.M., Figueiredo, M.A.: An augmented Lagrangian approach to the constrained optimization formulation of imaging inverse problems. IEEE Trans. Image Process 20(3), 681–695 (2010)

    Article  MathSciNet  Google Scholar 

  2. Aghdam, M.A., Sharifi, A., Pedram, M.M.: Combination of rs-fMRI and sMRI data to discriminate autism spectrum disorders in young children using deep belief network. J. Digit. Imaging 31(6), 895–903 (2018)

    Article  Google Scholar 

  3. Assaf, Y., Pasternak, O.: Diffusion tensor imaging (DTI)-based white matter mapping in brain research: a review. J. Mol. Neurosci. 34(1), 51–61 (2008). https://doi.org/10.1007/s12031-007-0029-0

    Article  Google Scholar 

  4. Banerjee, A., Jost, J.: On the spectrum of the normalized graph Laplacian. Linear Algebra Appl. 428(11–12), 3015–3022 (2008)

    Article  MathSciNet  Google Scholar 

  5. Behrens, T.E., Berg, H.J., Jbabdi, S., Rushworth, M.F., Woolrich, M.W.: Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? Neuroimage 34(1), 144–155 (2007)

    Article  Google Scholar 

  6. Behzadi, Y., et al.: A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. Neuroimage 37(1), 90–101 (2007)

    Article  Google Scholar 

  7. Bennett, I.J., Rypma, B.: Advances in functional neuroanatomy: a review of combined DTI and fMRI studies in healthy younger and older adults. Neurosci. Biobehav. Rev. 37(7), 1201–1210 (2013)

    Article  Google Scholar 

  8. Cabral, J., Kringelbach, M.L., Deco, G.: Functional connectivity dynamically evolves on multiple time-scales over a static structural connectome: models and mechanisms. NeuroImage 160, 84–96 (2017)

    Article  Google Scholar 

  9. Cai, B., Zille, P., Stephen, J.M., Wilson, T.W., Calhoun, V.D., Wang, Y.P.: Estimation of dynamic sparse connectivity patterns from resting state fMRI. IEEE Trans. Med. Imaging 37(5), 1224–1234 (2017)

    Article  Google Scholar 

  10. Damaraju, E., et al.: Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia. NeuroImage: Clin. 5, 298–308 (2014)

    Article  Google Scholar 

  11. Dziuk, M., Larson, J.G., Apostu, A., Mahone, E.M., Denckla, M.B., Mostofsky, S.H.: Dyspraxia in autism: association with motor, social, and communicative deficits. Dev. Med. Child Neurol. 49(10), 734–739 (2007)

    Article  Google Scholar 

  12. D’Souza, N.S., Nebel, M.B., Wymbs, N., Mostofsky, S., Venkataraman, A.: A generative-discriminative basis learning framework to predict clinical severity from resting state functional MRI data. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11072, pp. 163–171. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00931-1_19

    Chapter  Google Scholar 

  13. D’Souza, N.S., Nebel, M.B., Wymbs, N., Mostofsky, S., Venkataraman, A.: A coupled manifold optimization framework to jointly model the functional connectomics and behavioral data spaces. In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 605–616. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20351-1_47

    Chapter  Google Scholar 

  14. D’Souza, N.S., Nebel, M.B., Wymbs, N., Mostofsky, S., Venkataraman, A.: Integrating neural networks and dictionary learning for multidimensional clinical characterizations from functional connectomics data. In: Shen, D. (ed.) MICCAI 2019. LNCS, vol. 11766, pp. 709–717. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_79

    Chapter  Google Scholar 

  15. Everson, R.: Orthogonal, but not orthonormal, procrustes problems. Adv. Comput. Math. 3(4), 782–790 (1998)

    Google Scholar 

  16. Jenkinson, M., Beckmann, C.F., Behrens, T.E., Woolrich, M.W., Smith, S.M.: FSL. Neuroimage 62(2), 782–790 (2012)

    Article  Google Scholar 

  17. Kawahara, J., et al.: BrainNetCNN: convolutional neural networks for brain networks; towards predicting neurodevelopment. NeuroImage 146, 1038–1049 (2017)

    Article  Google Scholar 

  18. Kingma, D.P., Ba, J.L.: Adam: a method for stochastic optimization (2015)

    Google Scholar 

  19. Lee, M.H., Smyser, C.D., Shimony, J.S.: Resting-state fMRI: a review of methods and clinical applications. Am. J. Neuroradiol. 34(10), 1866–1872 (2013)

    Article  Google Scholar 

  20. Manton, J.H., Mahony, R., Hua, Y.: The geometry of weighted low-rank approximations. IEEE Trans. Sig. Process 51(2), 500–514 (2003)

    Article  MathSciNet  Google Scholar 

  21. Mostofsky, S.H., Dubey, P., Jerath, V.K., Jansiewicz, E.M., Goldberg, M.C., Denckla, M.B.: Developmental dyspraxia is not limited to imitation in children with autism spectrum disorders. J. Int. Neuropsychol. Soc. 12(3), 314–326 (2006)

    Article  Google Scholar 

  22. Nebel, M.B., et al.: Intrinsic visual-motor synchrony correlates with social deficits in autism. Biol. Psychiatry 79(8), 633–641 (2016)

    Article  Google Scholar 

  23. Payakachat, N., et al.: Autism spectrum disorders: a review of measures for clinical, health services and cost-effectiveness applications. Expert Rev. Pharmacoeconomics Outcomes Res. 12(4), 485–503 (2012)

    Article  Google Scholar 

  24. Pouw, L.B., Rieffe, C., Stockmann, L., Gadow, K.D.: The link between emotion regulation, social functioning, and depression in boys with ASD. Res. Autism Spectrum Disord. 7(4), 549–556 (2013)

    Article  Google Scholar 

  25. Price, T., Wee, C.-Y., Gao, W., Shen, D.: Multiple-network classification of childhood autism using functional connectivity dynamics. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8675, pp. 177–184. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10443-0_23

    Chapter  Google Scholar 

  26. Rabany, L., et al.: Dynamic functional connectivity in schizophrenia and autism spectrum disorder: convergence, divergence and classification. NeuroImage Clin. 24, 101966 (2019)

    Article  Google Scholar 

  27. Rashid, B., Damaraju, E., Pearlson, G.D., Calhoun, V.D.: Dynamic connectivity states estimated from resting fMRI identify differences among schizophrenia, bipolar disorder, and healthy control subjects. Front. Hum. Neurosci. 8, 897 (2014)

    Article  Google Scholar 

  28. Schnabel, R.B., Toint, P.L.: Forcing sparsity by projecting with respect to a non-diagonally weighted Frobenius norm. Math. Program. 25(1), 125–129 (1983). https://doi.org/10.1007/BF02591723

    Article  MATH  Google Scholar 

  29. Skudlarski, P., Jagannathan, K., Calhoun, V.D., Hampson, M., Skudlarska, B.A., Pearlson, G.: Measuring brain connectivity: diffusion tensor imaging validates resting state temporal correlations. Neuroimage 43(3), 554–561 (2008)

    Article  Google Scholar 

  30. Sridharan, D., et al.: A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proc. Nat. Acad. Sci. 105(34), 12569–12574 (2008)

    Article  Google Scholar 

  31. Sui, J., et al.: Combination of resting state fMRI, DTI, and sMRI data to discriminate schizophrenia by n-way MCCA+ JICA. Front. Hum. Neurosci. 7, 235 (2013)

    Article  Google Scholar 

  32. Tzourio-Mazoyer, N., et al.: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15(1), 273–289 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niharika Shimona D’Souza .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1514 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

D’Souza, N.S. et al. (2020). A Deep-Generative Hybrid Model to Integrate Multimodal and Dynamic Connectivity for Predicting Spectrum-Level Deficits in Autism. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12267. Springer, Cham. https://doi.org/10.1007/978-3-030-59728-3_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59728-3_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59727-6

  • Online ISBN: 978-3-030-59728-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics