Skip to main content

Whole MILC: Generalizing Learned Dynamics Across Tasks, Datasets, and Populations

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Abstract

Behavioral changes are the earliest signs of a mental disorder, but arguably, the dynamics of brain function gets affected even earlier. Subsequently, spatio-temporal structure of disorder-specific dynamics is crucial for early diagnosis and understanding the disorder mechanism. A common way of learning discriminatory features relies on training a classifier and evaluating feature importance. Classical classifiers, based on handcrafted features are quite powerful, but suffer the curse of dimensionality when applied to large input dimensions of spatio-temporal data. Deep learning algorithms could handle the problem and a model introspection could highlight discriminatory spatio-temporal regions but need way more samples to train. In this paper we present a novel self supervised training schema which reinforces whole sequence mutual information local to context (whole MILC). We pre-train the whole MILC model on unlabeled and unrelated healthy control data. We test our model on three different disorders (i) Schizophrenia (ii) Autism and (iii) Alzheimers and four different studies. Our algorithm outperforms existing self-supervised pre-training methods and provides competitive classification results to classical machine learning algorithms. Importantly, whole MILC enables attribution of subject diagnosis to specific spatio-temporal regions in the fMRI signal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Human silhouettes are by Natasha Sinegina for Creazilla.com without modifications, https://creativecommons.org/licenses/by/4.0/.

  2. 2.

    These data were downloaded from Function BIRN Data Repository, Project Accession Number 2007-BDR-6UHZ1.

  3. 3.

    http://fcon_1000.projects.nitrc.org/indi/abide/.

  4. 4.

    https://www.oasis-brains.org/.

References

  1. Anand, A., Racah, E., Ozair, S., Bengio, Y., Côté, M.A., Hjelm, R.D.: Unsupervised state representation learning in Atari. arXiv preprint arXiv:1906.08226 (2019)

  2. Bachman, P., Hjelm, R.D., Buchwalter, W.: Learning representations by maximizing mutual information across views. arXiv preprint arXiv:1906.00910 (2019)

  3. Calhoun, V.D., Adali, T., Pearlson, G.D., Pekar, J.: A method for making group inferences from functional MRI data using independent component analysis. Hum. Brain Mapp. 14(3), 140–151 (2001)

    Article  Google Scholar 

  4. Calhoun, V.D., Miller, R., Pearlson, G., Adalı, T.: The chronnectome: time-varying connectivity networks as the next frontier in fMRI data discovery. Neuron 84(2), 262–274 (2014)

    Article  Google Scholar 

  5. Çetin, M.S., et al.: Thalamus and posterior temporal lobe show greater inter-network connectivity at rest and across sensory paradigms in schizophrenia. Neuroimage 97, 117–126 (2014)

    Article  Google Scholar 

  6. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  7. Di Martino, A., et al.: The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Mol. Psychiatry 19(6), 659 (2014)

    Article  Google Scholar 

  8. Eavani, H., Satterthwaite, T.D., Gur, R.E., Gur, R.C., Davatzikos, C.: Unsupervised learning of functional network dynamics in resting state fMRI. In: Gee, J.C., Joshi, S., Pohl, K.M., Wells, W.M., Zöllei, L. (eds.) IPMI 2013. LNCS, vol. 7917, pp. 426–437. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38868-2_36

    Chapter  Google Scholar 

  9. Erhan, D., Bengio, Y., Courville, A., Manzagol, P.A., Vincent, P., Bengio, S.: Why does unsupervised pre-training help deep learning? J. Mach. Learn. Res. 11, 625–660 (2010)

    MathSciNet  MATH  Google Scholar 

  10. Fedorov, A., et al.: Prediction of progression to Alzheimers disease with deep InfoMax. arXiv preprint arXiv:1904.10931 (2019)

  11. Fu, Z., et al.: Altered static and dynamic functional network connectivity in Alzheimer’s disease and subcortical ischemic vascular disease: shared and specific brain connectivity abnormalities. Hum. Brain Mapp. (2019)

    Google Scholar 

  12. Goldberg, D.P., Huxley, P.: Common Mental Disorders: A Bio-social Model. Tavistock/Routledge, London (1992)

    Google Scholar 

  13. Hénaff, O.J., Razavi, A., Doersch, C., Eslami, S., Oord, A.V.D.: Data-efficient image recognition with contrastive predictive coding. arXiv preprint arXiv:1905.09272 (2019)

  14. Hjelm, R.D., Calhoun, V.D., Salakhutdinov, R., Allen, E.A., Adali, T., Plis, S.M.: Restricted Boltzmann machines for neuroimaging: an application in identifying intrinsic networks. NeuroImage 96, 245–260 (2014)

    Article  Google Scholar 

  15. Hjelm, R.D., Damaraju, E., Cho, K., Laufs, H., Plis, S.M., Calhoun, V.D.: Spatio-temporal dynamics of intrinsic networks in functional magnetic imaging data using recurrent neural networks. Front. Neurosci. 12, 600 (2018)

    Article  Google Scholar 

  16. Hjelm, R.D., et al.: Learning deep representations by mutual information estimation and maximization. arXiv preprint arXiv:1808.06670 (2018)

  17. Keator, D.B., et al.: The function biomedical informatics research network data repository. Neuroimage 124, 1074–1079 (2016)

    Article  Google Scholar 

  18. Khazaee, A., Ebrahimzadeh, A., Babajani-Feremi, A.: Application of advanced machine learning methods on resting-state fMRI network for identification of mild cognitive impairment and Alzheimer’s disease. Brain Imaging and Behavior 10(3), 799–817 (2016). https://doi.org/10.1007/s11682-015-9448-7

  19. Khosla, M., Jamison, K., Kuceyeski, A., Sabuncu, M.R.: Detecting abnormalities in resting-state dynamics: an unsupervised learning approach. In: Suk, H.-I., Liu, M., Yan, P., Lian, C. (eds.) MLMI 2019. LNCS, vol. 11861, pp. 301–309. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32692-0_35

    Chapter  Google Scholar 

  20. Khosla, M., Jamison, K., Ngo, G.H., Kuceyeski, A., Sabuncu, M.R.: Machine learning in resting-state fMRI analysis. Magnet. Reson. Imaging (2019)

    Google Scholar 

  21. Li, H., Parikh, N.A., He, L.: A novel transfer learning approach to enhance deep neural network classification of brain functional connectomes. Front. Neurosci. 12, 491 (2018). https://doi.org/10.3389/fnins.2018.00491, https://www.frontiersin.org/article/10.3389/fnins.2018.00491

  22. Lugosch, L., Ravanelli, M., Ignoto, P., Tomar, V.S., Bengio, Y.: Speech model pre-training for end-to-end spoken language understanding. arXiv preprint arXiv:1904.03670 (2019)

  23. Lütkepohl, H.: New Introduction to Multiple Time Series analysis. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-27752-1

    Book  MATH  Google Scholar 

  24. Mahmood, U., Rahman, M.M., Fedorov, A., Fu, Z., Plis, S.: Transfer learning of fMRI dynamics. arXiv preprint arXiv:1911.06813 (2019)

  25. Mensch, A., Mairal, J., Bzdok, D., Thirion, B., Varoquaux, G.: Learning neural representations of human cognition across many fMRI studies. In: Advances in Neural Information Processing Systems, pp. 5883–5893 (2017)

    Google Scholar 

  26. Oord, A.V.D., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018)

  27. Plis, S.M., et al.: Deep learning for neuroimaging: a validation study. Front. Neurosci. 8, 229 (2014)

    Article  Google Scholar 

  28. Ravanelli, M., Bengio, Y.: Learning speaker representations with mutual information. arXiv preprint arXiv:1812.00271 (2018)

  29. Rubin, E.H., et al.: A prospective study of cognitive function and onset of dementia in cognitively healthy elders. Arch. Neurol. 55(3), 395–401 (1998)

    Article  Google Scholar 

  30. Thomas, A.W., Müller, K.R., Samek, W.: Deep transfer learning for whole-brain fMRI analyses. arXiv preprint arXiv:1907.01953 (2019)

  31. Ulloa, A., Plis, S., Calhoun, V.: Improving classification rate of schizophrenia using a multimodal multi-layer perceptron model with structural and functional MR. arXiv preprint arXiv:1804.04591 (2018)

  32. Van Essen, D.C., et al.: The WU-Minn human connectome project: an overview. Neuroimage 80, 62–79 (2013)

    Article  Google Scholar 

  33. Yan, W., et al.: Discriminating schizophrenia from normal controls using resting state functional network connectivity: a deep neural network and layer-wise relevance propagation method. In: 2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP), pp. 1–6. IEEE (2017)

    Google Scholar 

Download references

Acknowledgement

This study was in part supported by NIH grants 1R01AG063153 and 2R01EB006841. We’d like to thank and acknowledge the open access data platforms and data sources that were used for this work, including: Human Connectome Project (HCP), Open Access Series of Imaging Studies (OASIS), Autism Brain Imaging Data Exchange (ABIDE I), Function Biomedical Informatics Research Network (FBIRN) and Centers of Biomedical Research Excellence (COBRE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Usman Mahmood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mahmood, U. et al. (2020). Whole MILC: Generalizing Learned Dynamics Across Tasks, Datasets, and Populations. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12267. Springer, Cham. https://doi.org/10.1007/978-3-030-59728-3_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59728-3_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59727-6

  • Online ISBN: 978-3-030-59728-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics