Skip to main content

Initial Litter Chemical Composition

  • Chapter
  • First Online:
Plant Litter

Abstract

Litter quality is often described in terms of its initial chemical composition. Regarding chemical composition, foliar litter appears to be the most studied group of litter. The main organic litter compounds are cellulose, a group of hemicelluloses and lignin, the latter often measured as Acid-Unhydrolyzable Residue (AUR). In addition, there are several polymeric compounds including suberins, tannins, and cutins. Concentrations of the main nutrients vary among litter species and type of litter. The use of 13C-NMR to analyze the types of C bonds in litter has provided new insights into the mechanisms of AUR degradation. For some species/genera (e.g. pine spp.) we see that concentrations of nitrogen (N), phosphorus (P), sulfur (S) and potassium (K) increase with increasing mean annual temperature (MAT) and actual evapotranspiration (AET), whereas manganese (Mn) in pine litter decreases. For spruce (Picea) needle litter no effect of climate has been observed. Still, an increase in N concentration with MAT/AET appears to be a general phenomenon covering most investigated species. AUR concentration has been positively related to litter N concentration. It appears that AUR concentrations are higher in coniferous litter than in broadleaf whereas those for N are higher in broadleaf litter. Natural concentrations of heavy metals are given for a few foliar litters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Berg B, Ekbohm G (1991) Litter mass-loss rates and decomposition patterns in some needle and leaf litter types. Long-term decomposition in a Scots pine forest VII. Can J Bot 69:1449–1456

    Article  Google Scholar 

  • Berg B, McClaugherty C (2008) Plant litter. Decomposition. Humus formation. Carbon sequestration, 2nd edn. Springer, Berlin, 338 pp 91 ill. ISBN 978-3-540-74922-6

    Google Scholar 

  • Berg B, McClaugherty C (2014) Plant litter. Decomposition. Humus Formation. Carbon Sequestration, 3rd edn. Springer, Berlin. 317 pp 92 ill. ISBN 978-3-642-38820-0

    Google Scholar 

  • Berg B, Meentemeyer V (2002) Litter quality in a north European transect versus carbon storage potential. Plant Soil 242:83–92

    Article  CAS  Google Scholar 

  • Berg B, Staaf H (1980) Decomposition rate and chemical changes in Scots pine needle litter. II. Influence of chemical composition. Ecol Bull (Stockh) 32:373–390

    CAS  Google Scholar 

  • Berg B, Tamm CO (1991) Decomposition and nutrient dynamics of litter in long-term optimum nutrition experiments. I. Organic matter decomposition in Norway spruce (Picea abies) needle litter. Scand J For Res 6:305–321

    Article  Google Scholar 

  • Berg B, Booltink HGW, Breymeyer A, Ewertsson A, Gallardo A, Holm B, Johansson MB, Koivuoja S, Meentemeyer V, Nyman P, Olofsson J, Pettersson AS, Staaf H, Staaf I, Uba L (1991) Data on needle litter decomposition and soil climate as well as site characteristics for some coniferous forest sites, 2nd edn, sect 2. Data on needle litter decomposition. Swed Univ Agric Sci, Dept Ecol Environ Res Rep 42, 450 pp

    Google Scholar 

  • Berg B, Calvo de Anta R, Escudero A, Johansson M-B, Laskowski R, Madeira M, McClaugherty C, Meentemeyer V, Reurslag A, Virzo De Santo A (1995) The chemical composition of newly shed needle litter of different pine species and Scots pine in a climatic transect. Long-term decomposition in a Scots pine forest X. Can J Bot 73:1423–1435

    Article  CAS  Google Scholar 

  • Berg B, Johansson M-B, Meentemeyer V (2000) Litter decomposition in a transect of Norway spruce forests: substrate quality and climate control. Can J For Res 30:1136–1147

    Article  Google Scholar 

  • Berg B, Virzo De Santo A, Rutigliano F, Ekbohm G (2003) Limit values for plant litter decomposing in two contrasting soils - influence of litter elemental composition. Acta Oecol 24:295–302

    Article  Google Scholar 

  • Berg B, De Marco A, Davey M, Emmett B, Hobbie S, Liu C, McClaugherty C, Norell L, Johansson M-B, Rutigliano F, Vesterdal L, Virzo De Santo A (2010) Limit values for foliar litter decomposition – pine forests. Biogeochemistry 100:57–73

    Article  CAS  Google Scholar 

  • Berg B, Liu C, Laskowski R, Davey M (2013) Relationships between Nitrogen, AUR, and climate among tree foliar litters. Can J For Res 43:104–107

    Google Scholar 

  • Bogatyrev L, Berg B, Staaf H (1983) Leaching of plant nutrients and total phenolic substances from some foliage litters—a laboratory study. Swedish Coniferous Forest Project. Technical Report, vol 33, 59 pp

    Google Scholar 

  • Cepakova S, Frouz J (2015) Changes in chemical composition of litter during decomposition: a review of published C-13 NMR spectra. J Soil Sci Plant Nutr 15:805–815

    CAS  Google Scholar 

  • Core HA, Cote WA, Day AC (1979) Wood structure and identification. Syracuse Univ Press, Syracuse, p 182

    Google Scholar 

  • Dean JFD (1997) Lignin analysis, chap 17. In: Dashek WV (ed) Methods in plant biochemistry and molecular biology. CRC Press, New York, pp 199–215

    Google Scholar 

  • Dugger WM (1983) Boron in plant metabolism. In: Läuckli A, Bielski RL (eds) Inorganic plant nutrition, vol 15B. Springer, Berlin, pp 626–650

    Google Scholar 

  • Eriksson K-E, Blanchette RA, Ander P (1990) Microbial and enzymatic degradation of wood and wood components. Springer, Berlin, p 407

    Google Scholar 

  • Faituri MY (2002) Soil organic matter in Mediterranean and Scandinavian forest ecosystems and dynamics of nutrients and monomeric phenolic compounds. Silvestra, vol 236, 136 pp

    Google Scholar 

  • Fengel D, Wegener G (1983) Wood: chemistry, ultrastructure, reactions. De Gruyter, Berlin, p 613

    Book  Google Scholar 

  • Gosz JR (1981) Nitrogen cycling in coniferous ecosystems. In: Terrestrial nitrogen cycles: processes, ecosystem strategies and management impacts. Ecol Bull, vol 33, pp. 405-426

    Google Scholar 

  • Hagen-Thorn A, Varnagiryte I, Nihlgård B, Armolaitis K (2006) Autumn nutrient resorption and losses in four deciduous forest tree species. Forest Ecol Manage 228:33–39

    Article  Google Scholar 

  • Hristovski S, Berg B, Melovski Lj (2014) Limitless decomposition in leaf litter of common beech: patterns, nutrients’ and heavy metal’s dynamics. Pedobiologia 57:131–138

    Article  Google Scholar 

  • Johansson M-B, Berg B, Meentemeyer V (1995) Litter mass-loss rates in late stages of decomposition in a climatic transect of pine forests. Long-term decomposition in a Scots pine forest, IX. Can J Bot 73:1509–1521

    Article  Google Scholar 

  • Kang H, Xin Z, Berg B, Burgess PJ, Liu Q, Li Z, Liu C (2010) Global pattern of leaf litter nitrogen and phosphorus in woody plants. Ann For Sci 67(8):article 811

    Google Scholar 

  • Kerr TJ, Goring DAI (1975) The ultrastructural arrangement of the wood cell wall. Cell Chem Technol 9:563–573

    Google Scholar 

  • Killingbeck KT (1996) Nutrients in senesced leaves: keys to the search for potential resorption and resorption proficiency. Ecology 77:1716–1727

    Article  Google Scholar 

  • Kögel-Knabner I, Ziegler F, Riederer M, Zech W (1989) Distribution and decomposition pattern of cutin and suberin in forest soils. Z Pflanzenernähr Bodenkd 152:409–413

    Article  Google Scholar 

  • Kolattukudy PE (1980) Biopolyester membranes of plants: cutin and suberin. Science 208:990–1000

    Article  CAS  PubMed  Google Scholar 

  • Kolattukudy PE (1981) Structure, biosynthesis, and biodegradation of cutin and suberin. Ann Rev Plant Physiol 32:359–367

    Article  Google Scholar 

  • Kolattukudy PE (1984) Biochemistry and function of cutin and suberin. Can J Bot 62:2918–2933

    Article  CAS  Google Scholar 

  • Laskowski R, Berg B, Johansson M, McClaugherty C (1995) Release pattern for potassium from decomposing forest leaf litter. Long-term decomposition in a Scots pine forest XI. Can J Bot 73:2019–2027

    Article  CAS  Google Scholar 

  • Lewis DH (1980) Boron, lignification and the origin of vascular plants—a unified hypothesis. New Phytol 84:209–229

    Article  CAS  Google Scholar 

  • Liu C, Berg B, Kutsch W, Westman CJ, Ilvesniemi H, Shen X, Shen G, Chen X (2006) Leaf litter nitrogen concentration as related to climatic factors in Eurasian forests. Glob Ecol Biogeogr 15:438–444

    Article  Google Scholar 

  • Miller HG, Miller JD (1976) Analysis of needle fall as a means of assessing nitrogen status in pine. Forestry 49:57–61

    Article  Google Scholar 

  • Musha Y, Goring DAI (1975) Distribution of syringyl and guaiacyl moieties in hardwoods as indicated by ultraviolet microscopy. Wood Sci Technol 9:45–58

    Article  CAS  Google Scholar 

  • Nömmik H, Möller G (1981) Nitrogen recovery in soil and needle biomass after fertilization of a Scots pine stand, and growth responses obtained. Stud Forest Suec 159:37

    Google Scholar 

  • Oleksyn J, Reich PB, Zytkowiak R, Karolewski P, Tjoelker MG (2003) Nutrient conservation increases with latitude of origin in European Pinus sylvestris populations. Oecologica 136:220–235

    Article  CAS  Google Scholar 

  • Ono K, Hirai K, Morita S, Ohse K, Hiradate S (2009) Organic carbon accumulation processes on a forest floor during an early humification stage in a temperate deciduous forest in Japan: Evaluations of chemical compositional changes by C-13 NMR and their decomposition rates from litterbag experiment. Geoderma 151:351–356

    Article  CAS  Google Scholar 

  • Panshin AJ, de Zeeuw C (1980) Textbook of wood technology, 4th edn. McGraw-Hill, New York, p 722

    Google Scholar 

  • Paramesvaran N, Liese W (1982) Ultrastructural localization of wall components in wood cells. Holz Roh Werkst 40:145–155

    Article  Google Scholar 

  • Pastor J, Aber JD, McClaugherty CA, Melillo JM (1984) Aboveground production and N and P cycling along a nitrogen mineralization gradient on Blackhawk Island, Wisconsin. Ecology 65:256–268

    Article  CAS  Google Scholar 

  • Preston C, Nault JR, Trofymow JA, Smyth C, CIDET Working Group (2009a) Chemical changes during 6 years of decomposition of 11 litters in some Canadian forest sites. Part 1. Elemental composition, tannins, phenolics, and proximate fractions. Ecosystems 12:1053–1077

    Google Scholar 

  • Preston C, Nault JR, Trofymow JA (2009b) Chemical changes during 6 years of decomposition of 11 litters in some Canadian forest sites. Part 2. 13C abundance, solid-state 13C NMR spectroscopy and the meaning of ‘lignin’. Ecosystems 12:1078–1102

    Article  CAS  Google Scholar 

  • Reurslag AM, Berg B (1993) Rapport över litteraturstudie rörande mängd och kemisk sammansättning av fallförna samt mängd av organiskt material i skogsmark. Vattenfalls rapportserie No UB 1993/2, 110 pp (in Swedish, English summary)

    Google Scholar 

  • Saka S, Thomas RJ (1982a) Evaluation of the quantitative assay of lignin distribution by SEM-EDXA technique. Wood Sci Technol 16:1–18

    Article  CAS  Google Scholar 

  • Saka S, Thomas RJ (1982b) A study of lignification in loblolly pine tracheids by the SEM-EDXA technique. Wood Sci Technol 16:167–179

    Article  CAS  Google Scholar 

  • Staaf H (1982) Plant nutrient changes in beech leaves during senescence as influenced by site characteristics. Acta Oecol/Oecol Plant 3:161–170

    Google Scholar 

  • Tamm CO (1991) Nitrogen in terrestrial ecosystems. Questions of productivity, vegetational changes, and ecosystem stability, vol 81. Ecological studies. Springer, Berlin, p 115

    Google Scholar 

  • Tamm CO (1999) Optimum nutrition and nitrogen saturation in Scots pine stands. Stud Forest Suec 206:1–126

    Google Scholar 

  • Tamm CO, Nilsson Å, Wiklander G (1974) The optimum nutrition experiment Lisselbo: a brief description of an experiment in a young stand of (pine (Pinus sylvestris L.). Rapporter och uppsatser no 18. Institutionen för växtekologi och marklära, Skogshögskolan, Stockholm, p 25

    Google Scholar 

  • Trap J, Hättenschwiler S, Gattin I, Aubert M (2013) Forest ageing: an unexpected driver of beech leaf litter quality variability in European forests with strong consequences on soil processes. Fore Ecol Manage 302:338–345

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Björn Berg .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Berg, B., McClaugherty, C. (2020). Initial Litter Chemical Composition. In: Plant Litter. Springer, Cham. https://doi.org/10.1007/978-3-030-59631-6_4

Download citation

Publish with us

Policies and ethics