Skip to main content

Decomposer Organisms

  • Chapter
  • First Online:
Plant Litter

Abstract

Litter is mainly degraded by microorganisms (fungi and bacteria) and in boreal coniferous systems this is emphasized. The degradation of lignin is carried out by aerobic organisms (mainly white-rot but also soft-rot and brown-rot) whereas the degradation of cellulose and hemicelluloses proceeds under both aerobic and anaerobic conditions. The main enzymatic processes are described as well as factors that influence the formation and production of enzymes in microorganisms. The characteristics of white-rot, brown-rot and soft-rot are reviewed. The repression caused by N on formation and activity of the lignin-degrading enzyme system is discussed as is the role of Mn for the formation of the widespread enzyme manganese (Mn) peroxidase. The potential importance of mycorrhizal fungi in humus degradation is introduced and the need for a better understanding of microbial ecology combined with new molecular biology approaches relative to decomposition processes is emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anagnost SE (1998) Light microscopic diagnosis of wood decay. IAWA J 19:141–167

    Article  Google Scholar 

  • Ander P, Eriksson K-E (1977) Selective degradation of wood components by white-rot fungi. Physiol Plant 41:239–248

    Article  CAS  Google Scholar 

  • Archibald F, Roy B (1992) Production of manganic chelates by laccase from the lignin-degrading fungus Trametes (Coriolus) versicolor. Appl Environ Microbiol 58:1496–1499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bélaich JP, Tardif C, Bélaich A, Caudin C (1997) The cellulolytic system of Clostridium cellulolyticum. J Biotech 57:3–14

    Article  Google Scholar 

  • Bengtsson G (1992) Interactions between fungi, bacteria, and beech leaves in a stream microcosm. Oecologia 89:542–549

    Article  PubMed  Google Scholar 

  • Berg B, von Hofsten B, Pettersson G (1972) Electron microscopic observations on the degradation of cellulose fibres by Cellvibrio fulvus and Sporocytophaga myxococcoides. J Appl Bact 35:215–219

    Article  CAS  Google Scholar 

  • Blackwood CB, Buyer JS (2007) Evaluating the physical capture method of terminal restriction fragment length polymorphism for comparison of soil microbial communities. Soil Biol Biochem 39:590–599

    Article  CAS  Google Scholar 

  • Blanchette RA (1984) Manganese accumulation in wood decayed by white rot fungi. Phytopathology 74:725–730

    Article  CAS  Google Scholar 

  • Blanchette RA (1991) Delignification by wood-decay fungi. Annu Rev Phytopathol 29:381–398

    Article  CAS  Google Scholar 

  • Blanchette RA (1995) Degradation of the lignocellulose complex in wood. Can J Bot 73(Suppl):S999–S1010

    Article  CAS  Google Scholar 

  • Blanchette RA, Shaw CG (1978) Associations among bacteria, yeasts, and basidiomycetes during wood decay. Phytopathology 68:631–637

    Article  Google Scholar 

  • Blanchette RA, Krueger EW, Haight JE, Akhtar M, Akin DE (1997) Cell wall alterations in loblolly pine wood decayed by the white-rot fungus Ceriporiopsis subvermispora. J Biotech 53:203–213

    Article  CAS  Google Scholar 

  • Bono JJ, Gas G, Boudet M, Fayret J, Delatour C (1984) Etude comparee de la degradation de lignocelluloses par differentes souches de Fomes annosus. Can J Microbiol 29:1683–1688

    Article  Google Scholar 

  • Cameron MD, Aust SD (2001) Cellobiose dehydrogenase - an extracellular fungal flavocytochrome. Enzyme Microbiol Tech 28:129–138

    Article  CAS  Google Scholar 

  • Crawford RL (1981) Lignin biodegradation and transformation. Wiley, New York, p 137

    Google Scholar 

  • Dekker RFH (1985) Biodegradation of hemicelluloses. In: Higuchi T (ed) Biosynthesis and biodegradation of wood components. Academic Press, Tokyo, pp 505–533

    Chapter  Google Scholar 

  • D’Souza TM, Merritt CS, Reddy CA (1999) Lignin-modifying enzymes of the white-rot basidiomycete Ganoderma lucidum. Appl Environ Microbiol 65:5307–5313

    Article  PubMed  PubMed Central  Google Scholar 

  • Eriksson K-E, Blanchette RA, Ander P (1990) Microbial and enzymatic degradation of wood and wood components. Springer, Berlin, p 407

    Book  Google Scholar 

  • Freer SN, Detroy RW (1982) Biological delignification of 14C-labeled lignocelluloses by basidiomycetes: degradation and solubilization of the lignin and cellulose components. Mycologia 74:943–951

    CAS  Google Scholar 

  • Gilbertson RL (1980) Wood-rotting fungi of North America. Mycologia 72:1–49

    Article  Google Scholar 

  • Green F, Highley TL (1997) Mechanisms of brown-rot decay: paradigm or paradox. Int Biodet Biodeg 39:113–124

    Article  CAS  Google Scholar 

  • Griffith GS, Boddy L (1990) Fungal decomposition of attached angiosperm twigs. I. Decay community development in ash, beech, and oak. New Phytol 116:407–415

    Article  PubMed  Google Scholar 

  • Griffiths R, Caldwell BA, Cromack K, Morita RY (1990) Douglas-fir forest soils colonized by ectomycorrhizal mats. 1. Seasonal variation in nitrogen chemistry and nitrogen transformation rates. Can J For Res 20:211–218

    Article  Google Scholar 

  • Hatakka A (2001) Biodegradation of lignin. In: Hofman M, Stein A (eds) Biopolymers, vol 1. Lignin, humic substances and coal. Wiley, Weinheim, pp 129–180

    Google Scholar 

  • Highley TL (1987) Changes in chemical components of hardwood and softwood by brown-rot fungi. Mater Organ 21:39–45

    Google Scholar 

  • Highley TL (1988) Cellulolytic activity of brown-rot and white-rot fungi on solid media. Holzforschung 42

    Google Scholar 

  • Highley TL, Murmanis LL, Palmer JG (1985) Micromorphology of degradation in western hemlock and sweetgum by the brown-rot fungus Poria placenta. Holzforschung 39:73–78

    Article  CAS  Google Scholar 

  • Higuchi T (1993) Biodegradation mechanism of lignin by white-rot basidiomycetes. J Biotech 30:1–8

    Article  CAS  Google Scholar 

  • Hintikka V, Näykki O (1967) Notes on the effects of the fungus Hydnellum ferrugineum on forest soil and vegetation. Commun Inst For Fenn 62:1–22

    Google Scholar 

  • Hirano T, Tanaka H, Enoki A (1997) Relationship between production of hydroxyl radicals and degradation of wood by the brown-rot fungus, Tyromyces palustris. Holzforschung 51:389–395

    Article  CAS  Google Scholar 

  • Jin L, Schultz TP, Nicholas DD (1990) Structural characterization of brown-rotted lignin. Holzforschung 44:133–138

    Article  Google Scholar 

  • Jones PCT, Mollison JE (1948) A technique for the quantitative estimation of soil microorganisms. J Gen Microbiol 2:54–69

    Article  CAS  Google Scholar 

  • Kayang H (2001a) Fungi and bacterial enzyme activities in Alnus nepalensis D. Don Eur J Soil Sci 37:175–180

    CAS  Google Scholar 

  • Kayang H (2001b) Fungi and bacterial response to nitrogen starvation. J Bacteriol 135:790–797

    Google Scholar 

  • Keyser P, Kirk TK, Zeikus IG (1978) Ligninolytic enzyme of Phanerochaete chrysosporium: synthesized in the absence of lignin in response to nitrogen starvation. J Bacteriol: 211–216

    Google Scholar 

  • Kirk TK (1980) Physiology of lignin metabolism by white rot fungi. In: Kirk TK, Higuchi T, Chang H (eds) Lignin biodegradation: microbiology, chemistry, and potential applications, vol 2. CRC Press, Boca Raton, pp 51–63

    Google Scholar 

  • Kirk TK (1984) Degradation of lignin. In: Gibson DT (ed) Microbial degradation of organic compounds. Marcel Dekker, New York, pp 399–437

    Google Scholar 

  • Leatham GF, Kirk TK (1983) Regulation of lignolytic activity by nutrient nitrogen in white-rot basidiomycetes. FEMS Microbiol Lett 16:65–67

    Article  CAS  Google Scholar 

  • Lindeberg G (1944) Über die Physiologie ligninabbauender Bodenhymenomyzeten. Symbol Botan Upsal VIII/2, 183 pp

    Google Scholar 

  • Linkins AE, Sinsabaugh RL, McClaugherty CA, Melillo JM (1990) Cellulase activity on decomposing leaf litter in microcosms. Plant Soil 123:17–25

    Article  CAS  Google Scholar 

  • Møller J, Miller M, Kjøller A (1999) Fungal-bacterial interaction on beech leaves: influence on decomposition and dissolved organic carbon quality. Soil Biol Biochem 31:367–374

    Article  Google Scholar 

  • Nilsson T, Daniel G, Kirk TK, Obst JR (1989) Chemistry and microscopy of wood decay by some higher ascomycetes. Holzforschung 43:11–18

    Article  CAS  Google Scholar 

  • Ono Y (1998) A study on the initial decomposition process of needle litter in a Chamaecyparis obtusa forest. Masters Thesis, Kyoto Univ, Kyoto, Japan (in Japanese)

    Google Scholar 

  • Osono T, Takeda H (2001) Organic chemical and nutrient dynamics in decomposing beech leaf litter during 3-year decomposition process in a cool temperate deciduous forest in Japan. Ecol Res 16:649–670

    Article  CAS  Google Scholar 

  • Perez J, Jeffries TW (1992) Roles of manganese and organic acid chelators in regulating lignin degradation and biosynthesis of peroxidases by Phanerochaete chrysosporium. Appl Environ Microbiol 58:2402–2409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Persson T, Bååth E, Clarholm M, Lundkvist H, Söderström B, Sohlenius B (1980) Trophic structure, biomass dynamics and carbon metabolism of soil organisms in a Scots pine forest. Ecol Bull (Stockholm) 32:419–462

    CAS  Google Scholar 

  • Reid ID, Seifert KA (1982) Effect of an atmosphere of oxygen on growth, respiration, and lignin degradation by white-rot fungi. Can J Bot 60:252–260

    Article  CAS  Google Scholar 

  • Singh AP, Nilsson T, Daniel GF (1987) Ultrastructure of the attack of the wood of two high lignin tropical hardwood species, Alstonia scholaris and Homalium foetidum, by tunneling bacteria. J Inst Wood Sci 11:237–249

    Google Scholar 

  • Tien M, Kirk TK (1984) Lignin-degrading enzyme from Phanerochaete chrysosporium: purification, characterization, and catalytic properties of a unique H2O2-requiring oxygenase. Proc Natl Acad Sci USA 81:2280–2284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuneda A, Thorn RG (1995) Interactions of wood decay fungi with other microorganisms, with emphasis on the degradation of cell walls. Can J Bot 73:S1325–S1333

    Article  Google Scholar 

  • Unestam T (1991) Water repellency, mat formation, and leaf-stimulated growth of some ectomycorrhizal fungi. Mycorrhiza 1:13–20

    Article  Google Scholar 

  • Viljoen JA, Fred ED, Peterson WH (1926) The fermentation of cellulose by thermophilic bacteria. J Agric Sci 16:1–17

    Article  CAS  Google Scholar 

  • Wiegel J, Dykstra M (1984) Clostridium thermocellum: adhesion and sporulation while adhered to cellulose and hemicellulose. Appl Microbiol Biot 20:59–65

    Article  CAS  Google Scholar 

  • Wolter KE, Highley TL, Evans FJ (1980) A unique polysaccharide- and glycoside-degrading enzyme complex from the wood decay fungus Poria placenta. Biochem Biophys Res Commun 97:1499–1504

    Article  CAS  PubMed  Google Scholar 

  • Worrall JJ, Anagnost SE, Wang CJK (1991) Conditions for soft-rot of wood. Can J Microbiol 37:869–874

    Article  Google Scholar 

  • Worrall JJ, Anagnost SE, Zabel RA (1997) Comparison of wood decay among diverse lignicolous groups. Mycologia 89:199–219

    Article  Google Scholar 

  • Zak DR, Blackwood CB, Waldrop MP (2006) A molecular dawn for biogeochemistry. Trends Ecol Evol 21:288–295

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Björn Berg .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Berg, B., McClaugherty, C. (2020). Decomposer Organisms. In: Plant Litter. Springer, Cham. https://doi.org/10.1007/978-3-030-59631-6_3

Download citation

Publish with us

Policies and ethics