Skip to main content

Comments on Methods for Litter Decomposition Studies

  • Chapter
  • First Online:
Plant Litter

Abstract

Design of experiments is important, and we have summarized our experience with long-term measurements. We discuss how to plan experiments, how to prepare the litter for incubation and share thoughts about sampling intensity and number of replicate samples as well as consequences of too few samples. The concept period mass loss or annual mass loss is presented and discussed. This chapter also discusses some common analytical methods for lignin/Acid Unhydrolyzable Residue (AUR) with emphasis on the approach of using C-NMR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Berg B, Ekbohm G (1991) Litter mass loss rates and decomposition patterns in some needle and leaf litter types. Long-term decomposition in a Scots pine forest VII. Can J Bot 69:1449–1456

    Google Scholar 

  • Berg B, Staaf H (1980) Decomposition rate and chemical changes in Scots pine needle litter. II. Influence of chemical composition. Ecol Bull (Stockh) 32:373–390

    CAS  Google Scholar 

  • Berg B, Hannus K, Popoff T, Theander O (1982) Changes in organic–chemical components during decomposition. Long–term decomposition in a Scots pine forest I. Can J Bot 60:1310–1319

    Article  CAS  Google Scholar 

  • Berg B, Johansson M-B, Meentemeyer V (2000) Litter decomposition in a climatic transect of Norway spruce forests—climate and lignin control of mass-loss rates. Can J For Res 30:1136–1147

    Article  Google Scholar 

  • Berg B, Kjønaas J, Johansson M-B, Erhagen B, Åkerblom S (2015) Late stage pine litter decomposition: relationships to litter N, Mn and acid unhydrolyzable residue (AUR) concentrations and climatic factors. For Ecol Manage 358:41–47

    Article  Google Scholar 

  • Bradford MA, Berg B, Maynard DS, Wieder WR, Wood SA (2015) Data from: understanding the dominant controls on litter decomposition. Dryad Digital Repository http://dx.doi.org/10.5061/dryad.9t1s9

  • Bradford MA, Berg B, Maynard DS, Wieder WR, Wood SA (2016) Understanding the dominant controls on litter decomposition. J Ecol 104:229–238

    Article  CAS  Google Scholar 

  • Effland MJ (1977) Modified procedure to determine acid insoluble lignin in wood and pulp. Technol Assoc Pulp Pap Ind J 60(10):143–144

    CAS  Google Scholar 

  • Hågvar S (2015) Decomposing cones of Norway spruce (Picea abies (L.) H. Karst.): dry weight loss, chemical changes, and vertical transport in a Norwegian raw humus soil profile. Scand J For Res 30:643–652

    Google Scholar 

  • Hatfield RD, Jung HG, Ralph J, Buxton DR, Weimer PJ (1994) A comparison of the insoluble residues produced by the Klason lignin and acid detergent lignin procedures. J Sci Food Agric 65:51

    Article  CAS  Google Scholar 

  • Hedges JI, Ertel JR (1982) Characterization of lignin by gas capillary chromatography of cupric oxide oxidation products. Anal Chem 370(54):174–178

    Article  Google Scholar 

  • Hristovski S, Berg B, Melovski L (2014) Limitless decomposition in leaf litter of Common beech: patterns, nutrients’ and heavy metal’s dynamics. Pedobiologia 57:131–138

    Article  Google Scholar 

  • Johansson M-B, Berg B, Meentemeyer V (1995) Litter mass-loss rates in late stages of decomposition in a climatic transect of pine forests. Long-term decomposition in a Scots pine forest. IX. Can J Bot 73:1509–1521

    Google Scholar 

  • Jung HG, Mertens DR, Payne AJ (1997) Correlation of acid detergent lignin and Klason lignin with digestibility of forage dry matter and neutral detergent fiber. J Dary Sci 80(8):1622–1628

    Article  CAS  Google Scholar 

  • Kang H, Berg B, Liu C, Westman CJ (2009) Variation in mass-loss rate of foliar litter in relation to climate litter quality in Eurasian forests: differences among functional groups of litter. Silva Fennica 43(4):549–575

    Article  Google Scholar 

  • Klotzbücher T, Filley TR, Kaiser K, Kalbitz K (2011a) A study on lignin degradation in leaf and needle litter using 13C-labelled tetramethylammonium hydroxide (TMAH) thermo-chemolysis: Comparison with CuO oxidation and Van Soest methods. Org Geoochemistry 42:1271–1278

    Article  Google Scholar 

  • Klotzbücher T, Kaiser K, Guggenberger G, Gatzer C, Kalbitz K (2011b) A new conceptual model for the fate of lignin in decomposing plant litter. Ecology 92(5):1052–1062

    Article  Google Scholar 

  • Kögel I (1986) Estimation and decomposition pattern of the lignin component in forest humus layers. Soil Biol Biochem 18(6):589–594

    Google Scholar 

  • Kögel I, Bochter R (1985) Characterization of lignin in forest humus layer by high-performance liquid chromatography of cupric oxide oxidation products. Soil Biol Biochem 17(5):637–640

    Article  Google Scholar 

  • Otto A, Simpson MJ (2006) Evaluation of the CuO oxidation parameters for determining the source and stage of lignin degradation in soil. Biogeochemistry 80:121–142

    Article  CAS  Google Scholar 

  • Preston C, Nault JR, Trofymov JA, Smyth C, CIDET Working Group (2009a) Chemical changes during 6 years of decomposition of 11 litters in some Canadian forest sites. Part 1. Elemental composition, Tannins, phenolics and proximate fractions. Ecosystems 12:1053–1077

    Google Scholar 

  • Preston C, Nault JR, Trofymow JA (2009b) Chemical changes during 6 years of decomposition of 11 litters in some Canadian forest sites. Part 2. 13C abundance, solid-state 13C NMR spectroscopy and the meaning of ‘lignin’. Ecosystems 12:1078–1102

    Google Scholar 

  • Theander O, Westerlund EA (1986) Studies on dietary fiber. 3. Improved procedures for analysis of dietary fiber. J Agric Food Chem 34:330

    Google Scholar 

  • Thevenot M, Dignac M-F, Rumpel C (2010) Fate of lignins in soils: a review. Soil Biol Biochem 42:1200–1211

    Article  CAS  Google Scholar 

  • Van Soest PJ (1963) Use of detergent in the analysis of fibrous feed. II. A rapid method for the determination of fibre and lignin. J Assoc Official Anal Chem 46:829–835

    Google Scholar 

  • Wessen B, Berg B (1986) Long-term decomposition of barley straw—chemical changes and ingrowth of fungal mycelium. Soil Biol Biochem 18(1):53–59

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Björn Berg .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Berg, B., McClaugherty, C. (2020). Comments on Methods for Litter Decomposition Studies. In: Plant Litter. Springer, Cham. https://doi.org/10.1007/978-3-030-59631-6_13

Download citation

Publish with us

Policies and ethics