Skip to main content

What Factors May Influence the Accumulation of Humus Layers?

  • Chapter
  • First Online:
Plant Litter

Abstract

Carbon (C) sequestration in organic layers has been studied in single forest stands and in continental scale gradients and this chapter focuses on gravimetric determinations, which mainly have been carried out in managed stands and chronosequences. Carbon sequestration rates may be based on two main factors, namely litter fall and size of the stable litter fraction formed during decomposition. We discuss and describe linear relationships between stand age and amount of humus accumulated in a humus layer. We also question the concept ‘steady state’. It appears that pine species gave a dominant C sequestration rate for humus on top of the mineral soil (primary sequestration). Recent data indicate that other species (e.g. Norway spruce) may store less in primary sequestration but a higher fraction in the mineral soil (secondary sequestration). Coniferous species appear to accumulate C in the humus layer faster than deciduous ones. Further, there appears to be a positive relationship between C accumulation rate in a humus layer and mean annual temperature with rates ranging from 0 to 1106 kg C ha−1 yr−1. The chapter also considers factors that influence the accumulation and distribution of soil organic matter in the soil profile.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Berg B (2004) Sequestration rates for C and N in humus at four N-polluted temperate forest stands. In: Matzner E (ed) Biogeochemistry of forested catchments in a changing environment. A German case study. Ecological studies, vol 172. Springer, Berlin, pp 361–376

    Google Scholar 

  • Berg B, Dise N (2004a) Does a higher N content in plant litter give a higher N sequestration in soil organic matter? Water, Air Soil Pollut Focus 4:343–358

    Article  CAS  Google Scholar 

  • Berg B, Dise N (2004b) Calculating the long-term stable nitrogen sink in northern European forests. Acta Oecol 26:15–21

    Article  Google Scholar 

  • Berg B, Ekbohm G (1991) Litter mass loss rates and decomposition patterns in some needle and leaf litter types. Long-term decomposition in a Scots pine forest VII. Can J Bot 69:1449–1456

    Article  Google Scholar 

  • Berg B, McClaugherty C (2003) Plant litter. Decomposition. Humus formation. Carbon sequestration, 1st edn. Springer, Berlin, 296 pp

    Google Scholar 

  • Berg B, McClaugherty C (2009) Plant litter. Decomposition. Humus formation. Carbon sequestration, 2nd edn. Springer, Berlin, p 338

    Google Scholar 

  • Berg B, McClaugherty C (2014) Plant litter. Decomposition. Humus formation. Carbon sequestration. Springer, Berlin, 317 pp 92 ill. ISBN 978-3-642-38820-0

    Google Scholar 

  • Berg B, Meentemeyer V (2001) Litterfall in some European coniferous forests as dependent on climate—a synthesis. Can J For Res 31:292–301

    Article  Google Scholar 

  • Berg B, Berg M, Cortina J, Escudero A, Gallardo A, Johansson M, Madeira M (1993) Soil organic matter in some European coniferous forests. In: Breymeyer A (ed) Proceedings of SCOPE seminar conference paper 18. Geography of carbon budget processes in terrestrial ecosystems. Szymbark, 17–23 Aug 1991, pp 111–122

    Google Scholar 

  • Berg B, McClaugherty C, Virzo De Santo A, Johansson M-B, Ekbohm G (1995) Decomposition of forest litter and soil organic matter—a mechanism for soil organic matter buildup? Scand J For Res 10:108–119

    Article  Google Scholar 

  • Berg B, McClaugherty C, Virzo De Santo A, Johnson D (2001) Humus buildup in boreal forests—effects of litter fall and its N concentration. Can J For Res 31:988–998

    Article  CAS  Google Scholar 

  • Berg B, Virzo De Santo A, Rutigliano F, Ekbohm G (2003) Limit values for plant litter decomposing in two contrasting soils—influence of litter elemental composition. Acta Oecologia 24:295–302

    Article  Google Scholar 

  • Berg B, McClaugherty C, Virzo De Santo A (2008) Practicalities of estimating carbon sequestration. CAB Rev Perspect Agric Vet Sci Nutr Nat Resour 3 (084):1–15

    Google Scholar 

  • Berg B, Johansson M-B, Nilsson Å, Gundersen P, Norell L (2009) Sequestration of carbon in soil organic matter layers in Swedish forests—direct measurements. Can J For Res 39:962–975

    Article  CAS  Google Scholar 

  • Bormann BT, DeBell DS (1981) Nitrogen content and other soil properties to age of red alder stands. Soil Sci Soc Am J 45:428–432

    Article  CAS  Google Scholar 

  • Couteaux M-M, McTiernan K, Berg B, Szuberla D, Dardennes P (1998) Chemical composition and carbon mineralisation potential of Scots pine needles at different stages of decomposition. Soil Biol Biochem 30:583–595

    Article  CAS  Google Scholar 

  • DeLuca H, Boisvenue C (2012) Boreal forest soil carbon: distribution, function and modelling. Forestry 85(2):161–184

    Article  Google Scholar 

  • De Marco A, Spaccini R, Vittozzi P, Esposito F, Berg B, Virzo De Santo A (2012) Decomposition of black locust and black pine leaf litter in two coeval forest stands on Mount Vesuvius and dynamics of organic components assessed through proximate analysis and NMR spectroscopy. Soil Biol Biochem 51:1–15

    Article  Google Scholar 

  • de Saussure HB (1796) Voyages dans les Alpes Vol 4, 538 pp (In French)

    Google Scholar 

  • Forrest WG, Ovington JD (1970) Organic matter changes in an age series of Pinus radiata plantations. J Appl Ecol 7:110–120

    Article  Google Scholar 

  • Forsmark B, Nordin A, Maaroufi NI, Lundmark T, Gundale MJ (2020) Low and high nitrogen deposition rates in Northern coniferous forests have different impacts on aboveground litter production, soil respiration, and soil carbon stocks. Ecosystems. Publ. Online https://doi.org/10.1007/s10021-020-00478-8

  • Holmsgaard E, Bang C (1977) Et traeartsforsØg med nåletraeer, bØg og eg. De første 10 år. Forstl. ForsØgsvaes. Dan 35:159–196 (In Danish)

    Google Scholar 

  • Jenkinson DS (1977) Studies on the decomposition of plant material in soil V. The effects of plant cover and soil type on the loss of carbon from 14C labeled ryegrass decomposing under field conditions. J Soil Sci 28:424–434

    Article  CAS  Google Scholar 

  • Jenny H (1930) A study on the influence of climate upon the nitrogen and organic matter content of the soil. Res Bull 152. Missouri Agric Exp Stn, Columbia, MO 66 pp

    Google Scholar 

  • Jenny H (1941) Factors of soil formation: a system of quantitative pedology. McGraw-Hill, New York, p 320

    Google Scholar 

  • Jenny H (1980) The soil resource. Origin and behavior. Springer, Berlin

    Book  Google Scholar 

  • Johnson D, Todd DE Jr, Trettib CF, Sedinger JS (2007) Soil carbon and nitrogen changes in forests of Walker branch watershed, 1972–2004. Soil Sci Soc Am J 71(5):1639–1646

    Article  CAS  Google Scholar 

  • Kiser LC, Kelly JM, Mays PA (2009) Changes in forest soil carbon and nitrogen after a thirty-year interval. Soil Sci Soc Am J 73(2):647–653

    Google Scholar 

  • Meentemeyer V, Gardner J, Box E (1985) World patterns and amounts of detrital soil carbon. Earth Surf Proc 10:557–567

    Article  CAS  Google Scholar 

  • Meesenburg H, Meiwes KJ, Bartens H (1999) Veränderung der Elementvorräte im Boden von Buchen- und Fichtenökosystemen in Solling. Berichte Freiburger Forstliche Forschung 7:109–114 (In German)

    Google Scholar 

  • Meiwes KJ, Meesenburg H, Bartens H, Rademacher P, Khanna PK (2002) Accumulation of humus in the litter layer of forest stands at solling. Possible causes and significance for the nutrient cycling. Forst und Holz 13–14:428–433 (In German, English summary)

    Google Scholar 

  • Odin H, Eriksson B, Perttu K (1983) Temperature climate maps for Swedish forestry. Swedish University of Agricultural Sciences. Department of Forest Soils, Report No 45, 57 pp

    Google Scholar 

  • Ovington JD (1954) Studies of the development of woodland conditions under different trees: the forest floor. J Ecol 42:71–80

    Article  Google Scholar 

  • Ovington JD (1959) The circulation of minerals in plantations of Pinus sylvestris L. Ann Bot NS 23:229–239

    Article  CAS  Google Scholar 

  • Prietzel J, Stetter U, Klemmt HJ, Rehfüss KE (2006) Recent carbon and nitrogen accumulation in soils of two Scots pine ecosystems in Southern Germany. Plant Soil 289:153–170

    Article  CAS  Google Scholar 

  • Rehfüss KE (1990) Waldböden, Entwicklung, Eigenschaften und Nutzung, 2nd edn. Pareys Studientexte 29. Parey, Hamburg, 294 pp (in German)

    Google Scholar 

  • Schiffman PM, Johnson WC (1989) Phytomass and detrital carbon storage during forest regrowth in the southeastern United States Piedmont. Can J For Res 19:67–78

    Article  Google Scholar 

  • Schulze E-D, de Vries W, Hauhs M, Rosen K, Rasmussen L, Tamm CO, Nilsson J (1989) Critical loads for nitrogen deposition on forest ecosystems. Water Air Soil Pollut 48:451–456

    Article  CAS  Google Scholar 

  • Scott NA, Cole CV, Elliott ET, Huffman SA (1996) Soil textural control on decomposition and soil organic matter dynamics. Soil Sci Soc Am J 60:1102–1109

    Article  CAS  Google Scholar 

  • Sogn TA, Stuanes AO, Abrahamsen G (1999) The capacity of forest soil to absorb antropogenic N. Ambio 28(4):346–349

    Google Scholar 

  • Staaf H, Berg B (1977) A structural and chemical description of litter and humus in the mature Scots pine stand at Ivantjärnsheden. Swed Con For Proj Int Rep No 65:31

    Google Scholar 

  • Strengbom J, Nordin A, Näsholm T, Ericson L (2002) Parasitic fungus mediates change in nitrogen-exposed boreal forest vegetation. J Ecol 90:61–67

    Article  Google Scholar 

  • Thuille A, Schulze ED (2006) Carbon dynamics in successional and afforested spruce stands in Thuringia and the Alps. Glob Change Biol 12:325–342

    Article  Google Scholar 

  • Tietema A (2004) WANDA, a regional dynamic nitrogen model (With Aggregated Nitrogen DynAmics) for nitrate leaching from forests. Hydrol Earth Syst Sci 8:803–812

    Article  CAS  Google Scholar 

  • Turner J, Long JN (1975) Accumulation of organic matter in a series of Douglas-fir stands. Can J For Res 5:681–690

    Article  Google Scholar 

  • Vesterdal L, Raulund-Rasmussen K (1998) Forest floor chemistry under seven tree species along a fertility gradient. Can J For Res 28:1636–1647

    Article  CAS  Google Scholar 

  • Vesterdal L, Ritter E, Gundersen P (2002) Change in organic carbon following afforestation of former arable land. For Ecol Manage 169:137–147

    Article  Google Scholar 

  • Wardle DA, Zachrisson O, Hörnberg G, Gallet C (1997) The influence of island area on ecosystem properties. Science 277:1296–1299

    Article  CAS  Google Scholar 

  • Zhu J, Wang C, Zhou Z, Zhou G, Hu, X, Jiang L, Li Y, Liu, G Ji C, Zhao S, Li P, Zhu, L, Tang Z, Zheng C, Birdsey RA, Pan Y, Fang J (2020) Increasing soil carbon stocks in eight permanent forest plots in China. Biogeosciences 17:715–726

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Björn Berg .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Berg, B., McClaugherty, C. (2020). What Factors May Influence the Accumulation of Humus Layers?. In: Plant Litter. Springer, Cham. https://doi.org/10.1007/978-3-030-59631-6_11

Download citation

Publish with us

Policies and ethics