Skip to main content

Approximating the Anticover of a String

  • Conference paper
  • First Online:
String Processing and Information Retrieval (SPIRE 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12303))

Included in the following conference series:

  • 438 Accesses

Abstract

The k-anticover of a string S is a set of distinct k-length substrings such that every index in S is contained in one of these substrings. The existence of an anticover indicates a lack of structure in S. It was recently proven by Alzamel et al.  [2] that finding whether or not a k-anticover exists is \(\mathcal {NP}\)-Hard for \(k \ge 3\).

In this paper, we extend the definition to provide three optimization versions for the k-anticover problem. We provide efficient approximation algorithms for these problems.

This work was partially supported by ISF grant 1475/18 and BSF grant 2018141.

This work is part of the second author’s Ph.D. dissertation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alamro, H., Badkobeh, G., Belazzougui, D., Iliopoulos, C.S., Puglisi, S.J.: Computing the antiperiod(s) of a string. In: Pisanti, N., Pissis, S.P. (eds.) Proceedings of 30th Combinatorial Pattern Matching, (CPM), LIPIcs, vol. 128, pp. 32:1–32:11. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)

    Google Scholar 

  2. Alzamel, A., et al.: Finding the anticover of a string. In: Proceedings of 31st Combinatorial Pattern Matching (CPM), LIPIcs (2020, to appear)

    Google Scholar 

  3. Amir, A., Levy, A., Lewenstein, M., Lubin, R., Porat, B.: Can we recover the cover? In: Proceedings of 28st Annual Symposium on Combinatorial Pattern Matching (CPM), LIPICS (2017)

    Google Scholar 

  4. Antoniou, P., Crochemore, M., Iliopoulos, C.S., Jayasekera, I., Landau, G.M.: Conservative string covering of indeterminate strings. In: Proceedings of Prague Stringology Conference, pp. 108–115 (2008)

    Google Scholar 

  5. Apostolico, A., Breslauer, D.: Of periods, quasiperiods, repetitions and covers. In: Mycielski, J., Rozenberg, G., Salomaa, A. (eds.) Structures in Logic and Computer Science. LNCS, vol. 1261, pp. 236–248. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63246-8_14

    Chapter  Google Scholar 

  6. Apostolico, A., Ehrenfeucht, A.: Efficient detection of quasiperiodicities in strings. Theoret. Comput. Sci. 119(2), 247–265 (1993)

    Article  MathSciNet  Google Scholar 

  7. Apostolico, A., Iliopoulos, C., Farach, M.: Optimal superprimitivity testing for strings. Inf. Process. Lett. 39, 17–20 (1991)

    Article  MathSciNet  Google Scholar 

  8. Badkobeh, G., Fici, G., Puglisi, S.J.: Algorithms for anti-powers in strings. Inf. Process. Lett. 137, 57–60 (2018)

    Article  MathSciNet  Google Scholar 

  9. Bar-Noy, A., Nisgav, A., Patt-Shamir, B.: Nearly optimal perfectly periodic schedules. Distrib. Comput. 15(4), 207–220 (2002). https://doi.org/10.1007/s00446-002-0085-1

    Article  MATH  Google Scholar 

  10. Benson, G.: Tandem repeats finder: a program to analyze DNA sequence. Nucleic Acids Res. 27(2), 573–580 (1999)

    Article  Google Scholar 

  11. Breslauer, D.: An on-line string superprimitivity test. Inf. Process. Lett. 44, 345–347 (1992)

    Article  MathSciNet  Google Scholar 

  12. Breslauer, D.: Testing string superprimitivity in parallel. Inf. Process. Lett. 49(5), 235–241 (1994)

    Article  MathSciNet  Google Scholar 

  13. Christodoulakis, M., Iliopoulos, C.S., Park, K., Sim, J.S.: Approximate seeds of strings. J. Automata, Lang. Comb. 10, 609–626 (2005)

    MathSciNet  MATH  Google Scholar 

  14. Crochemore, M., Iliopoulos, C.S., Pissis, S.P., Tischler, G.: Cover array string reconstruction. In: Amir, A., Parida, L. (eds.) CPM 2010. LNCS, vol. 6129, pp. 251–259. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13509-5_23

    Chapter  Google Scholar 

  15. Fici, G., Restivo, A., Silva, M., Zamboni, L.Q.: Anti-powers in infinite words. J. Comb. Theory Ser. A 157, 109–119 (2018)

    Article  MathSciNet  Google Scholar 

  16. Flouri, T., et al.: Enhanced string covering. Theoret. Comput. Sci. 506, 102–114 (2013)

    Article  MathSciNet  Google Scholar 

  17. Fuglsang, A.: Distribution of potential type ii restriction sites (palindromes) in prokaryotes. Biochem. Biophys. Res. Commun. 310(2), 280–285 (2003)

    Article  Google Scholar 

  18. Gelfand, M.S., Koonin, E.V.: Avoidance of palindromic words in bacterial and archaeal genomes: a close connection with restriction enzymes. Nucleic Acids Res. 25, 2430–2439 (1997)

    Article  Google Scholar 

  19. Gfeller, B.: Finding longest approximate periodic patterns. In: Dehne, F., Iacono, J., Sack, J.-R. (eds.) WADS 2011. LNCS, vol. 6844, pp. 463–474. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22300-6_39

    Chapter  Google Scholar 

  20. Han, J., Dong, G., Yin, Y.: Efficient mining of partial periodic patterns in time series database. In: Proceedings of 15th International Conference on Data Engineering (ICDE), pp. 106–115 (1999)

    Google Scholar 

  21. Iliopoulos, C.S., Mouchard, L.: Quasiperiodicity and string covering. Theoret. Comput. Sci. 218(1), 205–216 (1999)

    Article  MathSciNet  Google Scholar 

  22. Iliopoulos, C.S., Smyth, W.F.: An on-line algorithm of computing a minimum set of \(k\)-covers of a string. In: Proceedings of 9th Australian Workshop on Combinatorial Algorithms (AWOCA), pp. 97–106 (1998)

    Google Scholar 

  23. Iliopoulus, C.S., Moore, D.W.G., Park, K.: Covering a string. Algorithmica 16(3), 288–297 (1996). https://doi.org/10.1007/BF01955677

    Article  MathSciNet  Google Scholar 

  24. Kociumaka, T., Pissis, S.P., Radoszewski, J., Rytter, W., Waleń, T.: Fast algorithm for partial covers in words. In: Fischer, J., Sanders, P. (eds.) CPM 2013. LNCS, vol. 7922, pp. 177–188. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38905-4_18

    Chapter  Google Scholar 

  25. Li, Y., Smyth, W.F.: Computing the cover array in linear time. Algorithmica 32(1), 95–106 (2002). https://doi.org/10.1007/s00453-001-0062-2

    Article  MathSciNet  MATH  Google Scholar 

  26. Lisnic, B., Svetec, I.K., Saric, H., Nikolic, I., Zgaga, Z.: Palindrome content of the yeast Saccharomyces cerevisiae genome. Curr. Genet. 47, 289–297 (2005). https://doi.org/10.1007/s00294-005-0573-5

    Article  Google Scholar 

  27. Lothaire, M. (ed.): Combinatorics on Words, 2nd edn. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  28. Loving, J., Scaduto, J.P., Benson, G.: An SIMD algorithm for wraparound tandem alignment. In: Cai, Z., Daescu, O., Li, M. (eds.) ISBRA 2017. LNCS, vol. 10330, pp. 140–149. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59575-7_13

    Chapter  Google Scholar 

  29. Moore, D., Smyth, W.F.: An optimal algorithm to compute all the covers of a string. Inf. Process. Lett. 50(5), 239–246 (1994)

    Article  MathSciNet  Google Scholar 

  30. Moore, D., Smyth, W.F.: A correction to: an optimal algorithm to compute all the covers of a string. Inf. Process. Lett. 54, 101–103 (1995)

    Article  Google Scholar 

  31. Pellegrini, M., Renda, M.E., Vecchio, A.: TRStalker: an efficient heuristic for finding fuzzy tandem repeats. Bioinformatics [ISMB] 26(12), 358–366 (2010)

    Article  Google Scholar 

  32. Smyth, W.F.: Repetitive perhaps, but certainly not boring. Theoret. Comput. Sci. 249(2), 343–355 (2000)

    Article  MathSciNet  Google Scholar 

  33. Srivastava, S.K., Robins, H.S.: Palindromic nucleotide analysis in human T cell receptor rearrangements. PLoS ONE 7(12), e52250 (2012)

    Article  Google Scholar 

  34. Wexler, Y., Yakhini, Z., Kashi, Y., Geiger, D.: Finding approximate tandem repeats in genomic sequences. In: RECOMB, pp. 223–232 (2004)

    Google Scholar 

  35. Zhang, H., Guo, Q., Iliopoulos, C.S.: Algorithms for computing the lambda-regularities in strings. Fundamenta Informaticae 84(1), 33–49 (2008)

    MathSciNet  MATH  Google Scholar 

  36. Zhang, H., Guo, Q., Iliopoulos, C.S.: Varieties of regularities in weighted sequences. In: Chen, B. (ed.) AAIM 2010. LNCS, vol. 6124, pp. 271–280. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14355-7_28

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Itai Boneh .

Editor information

Editors and Affiliations

7 Appendix

7 Appendix

1.1 7.1 Figures

Fig. 1.
figure 1

(a) An example for MKA’s approximation ratio lower bound. (b) Simulation of MKA. (c) Simulation of MKA with least frequent heuristic

1.2 7.2 The Experiment Results

See Table 1.

Table 1. Minimal ratio algorithm MKA (\(\alpha \)) and minimal ratio algorithm infrequent tiebreaker (\(\beta \)).

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Amir, A., Boneh, I., Kondratovsky, E. (2020). Approximating the Anticover of a String. In: Boucher, C., Thankachan, S.V. (eds) String Processing and Information Retrieval. SPIRE 2020. Lecture Notes in Computer Science(), vol 12303. Springer, Cham. https://doi.org/10.1007/978-3-030-59212-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59212-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59211-0

  • Online ISBN: 978-3-030-59212-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics